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ABSTRACT

This is Volume Ill, the Analytical Solution, of a five v!_Jeport com-

piled for the Marshall Space Flight Center by the Aerospace Division,

Westinghouse Defense and Space Center, Baltimore, from industry studies

conducted for the purpose of consolidating and extending studies of detection,

tracking, navigation, and guidance systems for future space missions.

This volume reports the analytical solution of the problem as defined in

Volume If, Problem Definition. Specifically, the problem investigated is the

determination of navigation and control sensor requirements for local, or

onboard guidance of manned (or unmanned) lunar missions. In Volume II the

lunar mission is divided into a sequence of phases, each discussed individ-

ually. These phases are: earth launch to transfer injection; midcourse;

lunar orbit; lunar landing; lunar ascent; lunar rendezvous; and atmospheric

reentry. Of these, the first and the last are not given detailed consideration

in this report because of the extent of prior investigation. The remaining

mission phases are analyzed independently in the major sections of this
volume.

Generally, the analytical solution takes the form of a determination of the

degradation of navigation and control system performance caused by sensor

inaccuracies. The principal measures of performance are terminal errors

and fuel consumption. The information generated is examined in the light of

allowable performance degradation to determine sensor accuracy require-
ments.

As a part of the analytical solution, control and data processing methods,

as well as mathematical analysis techniques, are selected, discussed,

implemented (usually by means of digital computation), and evaluated.

These studies have been organized along guidelines furnished by _L-D-
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SUMMARY

The following sections examine in turn the Midcourse, Lunar Parking and

Descent Orbit, Lunar Landing, Lunar Ascent, and Lunar Orbit Rendezvous

Phases of a typical manned (or unmanned) lunar mission. These mission

phases are defined in the Part I, Problem Definition (Volume II). Detailed

summaries of the analytical studies are presented in Volume I.

These phases are treated in detail, with a section for each phase, with
each section divided into five subsections as follows:

• Introduction

General Background: This section links the Part I and Part II reports.

Analysis: This section describes the analytical effort and is, in turn,

divided into two parts:

Background Analysis: Analytical sections that begin with the system

concept generated in Volume II and result in a specific system model

that can be used in the analysis of sensor errors.

• Error Analysis: The techniques used, and their application to the

problem of determining sensor error effects are discussed.

Results: This section includes the presentations of numerical results

obtained from the error analysis, as well as discussion and inter-

pretation of these results with regard to sensor accuracy require-

ments. Where applicable, sample computations are included.

• Conclusions

The only major section that deviates appreciably from this format is

Section 4 which deals with lunar landing. Here, two separate systems are

analyzed independently; there are separate analysis, results, and conclusions

subsections for each concept. The two concepts are then compared to the

extent made possible by material developed in this report.

The successive mission phases are summarized, in order, in the sub-

sequent paragraphs.
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Section Z examines the manned lunar Midcourse Phase beginning after in-

jection into the earth-moon transfer orbit, and ending just prior to injection

into a circular lunar parking orbit. Control during midcourse consists of a

total of three corrective impulses at scheduled intervals during flight. A

minimum variance data processing scheme operating on optically measured

planet-star angles is used for navigation. The principal areas investigated

are: observation scheduling; the effect of angle measurement accuracy on

navigation and guidance system perlormance; the effect of velocity correction

accuracy on guidance system performance; and the effect of trajectory varia-

tions on guidance system performance.

The following conclusions are drawn from the Midcourse Phase Analysis:

a. In general, observations should be made to a star in the trajectory

plane, the primary factors determining final star selection being

visibility and ease of recognition. The same star can be used for

all in-plane measurements to a particular planet throughout most

of the flight. The range of near-optimum measurement and correc-

tion schedules is found to be very broad.

bo Generally, terminal miss distance and fuel consumption increase

sharply with increasing sensor error, while knowledge of the

terminal error is degraded only slightly. Angle measurement ac-

curacy on the order of I0 to 20 arc-sec I_ is shown to be required

for acceptable midcourse guidance and navigation.

C. Guidance system performance is shown to be relatively insensitive

to velocity correction errors as compared to the sensitivity of per-

formance to navigation sensor errors.

d. Increasing the magnitude of initial errors is found to increase cor-

rection fuel requirements, but have very little effect on terminal

error statistics.

e. It is shown that variations in trajectory parameters, such as mis-

sion time, trajectory plane orientation, and periselenum altitude

have some effect on guidance system performance, but these effects

are minor compared to the performance sensitivity to navigation

sensor errors.

f. The usefulness of range measurement capability for midcourse

guidance is established. Preliminary investigation of basic sensor

requirements indicates that they are severe.
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Discussion concerning the Lunar Parking and Descent Orbit Phase is
presented in Section 3. Immediately following the Midcourse Phase, the
vehicle is injected into a circular lunar parking orbit. At some later time,
all or part of the orbiting vehicle is injected into a synchronous, elliptical
descent orbit with the periselenum at the desired point of Lunar Landing Phase
initiation. Control during orbit consists of a thrust impulse at injection into
the circular parking orbit, and a second impulsive maneuver to inject into the
descent orbit. Navigation is performed by minimum variance data processing
of observed data. A fixed time of arrival (FTOA) guidance is used for de-
termining the descent orbit injection impulse. The observables considered are
star angle measurements, referenced to local vertical, and attitude above the
lunar surface. The problem is analyzed by linearized techniques, as well as
by direct simulation of the nonlinear system, thereby establishing a basis for
the evaluation of linearization error. The principal areas of investigation are:
evaluation of the effects of navigation sensor errors on guidance system per-
formance; evaluation of the minimum variance navigation technique; and de-
termination of the required number and position of navigation stars.

The following conclusions are drawn from the Lunar Parking and Descent
Orbit Phase Analysis:

a. Provided that the parking orbit has a duration of a half revolution or

greater, it is permissible to limit the navigation observables to two

or three known stars and the local vertical. A properly chosen set

of three stars (two in the orbital plane and one near the pole of the

orbit) provides navigation accuracy comparable to that obtainable

with 57 navigation stars. Acceptable performance is also

obtainable with two stars, both about 30 degrees out of the orbital

plane.

b. Overhead stars (i.e., stars near the local vertical line) are not

acceptable navigation stars.

C, The advantages of the star-vertical measurements are continuous

accessibility (including the flight over the dark and unknown sides of

the moon); low requirements for accompanying astrophysical data,

power consumption, and field of view; insensitivity to lunar rota-

tion; and ease of both manual and automatic implementation.

d. With direct radial position information (i. e. , altitude measure-

ments), the navigation errors can in some cases be reduced faster.

Because of the prominence of tangential errors, however, no ap-

preciable permanent improvement is achieved.
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e° The measurement sensitivities and the state transition matrices

used in the minimum variance equations must be computed from

the updated trajectory estimate, rather than from a given nominal

orbit.

fo With repeatedly updated Keplerian equations used for navigation,

the observed trajectory takes the form of a time-varying conic.

Because this is a valid representation of a perturbed orbit, and

because actual navigation measurements include the effects of orbital

perturbations, it is permissible to use two-body equations for navi-

gation, even in the presence of perturbing forces.

go Complete knowledge of the initial uncertainty covariance matrix is

not necessary; a pessimistic, diagonal initial matrix leads to a

conservative result. Since final navigation errors are insensitive

to initial navigation errors, the result is only slightly pessimistic.

h° Measurement timing uncertainties on the order of tenths of a second

have little effect upon navigation accuracy, in the cases under con-

sideration here.

i° Additional sources of error, not treated in this analysis, have been

covered in other related studies. Lack of precise knowledge of

sensor error statistics is apparently not critical, and the effects of

unknown measurement bias and astrodynamical uncertainties can be

counteracted.

j° The simulation conducted here supports the principle that terminal

navigation errors (i.e., state vector uncertainties) are insensitive

to initial errors. The guidance errors (i.e., final miss vector

components), however, are somewhat sensitive to initial conditions.

The reason is traceable to trajectory modifications, necessitated by

large displacements from reference position with fixed time guid-

ance.

k. The total rms final miss distance is directly proportional to the

rms measurement error, and to the square root of the time interval

between successive measurements. The slope of this line, however,

is somewhat sensitive to initial errors, as explained in the preced-

ing statement.

Section 4 contains analysis of the Lunar Landing Phase. This is a

powered phase beginning at periselenum of the synchronous descent orbit and

terminating with the vehicle in a hover state at some arbitrary distance

above the lunar surface. This arbitrary terminal altitude 'can be taken to be
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zero; however, when it is not zero, the hover-to-touchdown maneuver is
assumed to be under manual control. Navigation, guidance, and control are
essentially continuous processes during the landing maneuver. Two naviga-
tion schemes are treated during the discussion, and are denoted as beacon
tracking and doppler navigation respectively. The former is dependent on the
presence of a beacon on the lunar surface, while the latter is not. Two guid-
ance concepts are investigated in independent analyses. These concepts,
termed linear predictive guidance and modified proportional navigation, are
representative of two approaches to the guidance of powered flight as dis-
cussed in Volume II. The principal area of investigation with regard to each
guidance concept is the evaluation of the effect of navigation and control sen-
sor errors on overall guidance system performance. Both linearized and
simulation analysis techniques are employed. The principal numerical results
of both analyses are sensitivity coefficients which allow the determination of
terminal error components caused by navigation and control sensor inac-

curacies that exist during flight. (For a comparative discussion of the two

approaches see subsection 4.4.)

Conclusions pertinent to the analysis of lunar landing using linear predic-

tive guidance are:

a. Characteristics of terminal error distributions for any given group

of sensors are highly dependent on which sensor is the dominant

error source.

b. Generally, decreasing the bandwidth of the engine control subsystem

results is increased terminal error statistics.

C. When state of the art sensor capabilities are assumed for both bea-

con tracking and doppler navigation schemes, doppler navigation re-

sults in smaller terminal errors.

d. Terminal position errors caused by navigation and control sensor

inaccuracies are not serious, being on the order of a few meters

(based on sample computations). The situation with regard to

velocity errors is not so clear-cut. The landing mission profile as

envisioned for this study is composed of two subphases: descent-to-

hover and hover-to-touchdown. Linear predictive guidance is

assumed to be used down to the hover point with some undefined

guidance system controlling the hover-to-touchdown maneuver.

For manned flights, this touchdown maneuver is considered to be

under manual control. For this case, velocity errors of the magni-

tude indicated in tables 4-4 and 4-5 based on typical state of the art

sensor accuracies are felt to be satisfactory. For the unmanned

case, relaxed touchdown velocity requirements can be expected, so

that the terminal (hover point) velocity errors resulting from state
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of the art sensor capability are expected to be satisfactory even if

the hover-to-touchdown guidance system offers no reduction of the

velocity errors.

!

Conclusions pertinent to the analysis of lunar landing using modified pro-

portional navigation guidance are:

a. A combination of two proportional navigation guidance laws provides

a guidance concept which approaches an optimum fuel trajectory

over most of the flight and then makes a vertical approach to touch-

down.

b. Terminal vertical velocity errors are significant for all three as-

sumed levels of sensor capability. Terminal altitudes, horizontal

position, and horizontal velocity errors are not critical even at the

highest level of sensor error assumed.

C. The most significant random error contributors to the terminal

velocity error come from the range and line-of-sight angle obser-

vation sensors. (Beacon tracking navigation is used.)

d. Sensor bias errors contribute significantly to the terminal velocity

error at all assumed error levels. Bias errors in the observation

of range and range rate are the most critical.

e. The increase in fuel consumption caused by engine lag and sensor

bias errors is not particularly significant. If high level bias errors

in all observations are assumed to exist simultaneously, the increase

in fuel consumption is approximately 1 percent of the nominal value.

Section 5 examines the Lunar Ascent Phase of the manned lunar mission.

This is a powered phase wherein inertial guidance is employed. Because of

choice of a self-contained inertial guidance package is obviously best if it is

adequate to perform the task, an alternate choice is not considered. The

principal area of investigation is the evaluation of the effects of navigation,

guidance, and control sensor inaccuracies, as well as selenophysical un-

certainties on the performance of the ascent guidance system. The principal

results are tables of sensitivity coefficients which allow determination of

terminal errors caused by sensor inaccuracies as well as several other error

sources; namely: thrust termination errors, transfer errors, selenophysical

uncertainties. Sensor errors are construed to mean error sources contained

within the guidance system. For the inertial guidance scheme analyzed, the

following error sources are evaluated: accelerometer errors; gyro errors;

alignment errors; and computer errors. These sensitivity coefficients are
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used to distribute the maximum allowable terminal errors (based on fuel

considerations) among the error sources, thereby creating specific require-

ments (table 5-8).

The following conclusions are drawn from the Lunar Ascent Phase Analysis:

a. Sensor requirements for the Lunar Ascent Phase are within the

present state of the art.

b. The difference between sensor requirements for direct ascent to

rendezvous as opposed to an ascent involving an intermediate park-

ing orbit are not sufficient to dictate the selection of one approach
over the other.

c. The major portion of the velocity error at thrust termination is con-

tributed by guidance system errors.

d. The major portion of the position error at thrust termination is

contributed by uncertainty in the knowledge of launch site position.

e° Launch site uncertainties representing the maximum expected

error in position coordinates do not present a major obstacle to

lunar ascent guidance.

Finally, the Lunar Orbit Rendezvous Phase is examined in Section 6. At

initiation of this phase, the chaser and target vehicles are assumed to be in

approximately circular parking orbits. For analytical purposes, rendezvous

is considered to terminate when the chaser target range is reduced to some

preselected standoff value. The subsequent docking maneuver is assumed to

be under manual control. All navigation, guidance, and control functions are

performed on board the chaser vehicle. An on-off guidance logic based on

switching boundaries established in the range versus range rate phase plane

is used for terminal rendezvous maneuvering. The navigation observables

used during active rendezvous are line-of-sight range, range rate, and angle

rate to the target. The principal area of investigation is the evaluation of

navigation and control errors on the performance of the rendezvous guidance

system. The error analysis technique used is Monte Carlo simulation.

The following conclusions are drawn from the Lunar Orbit Rendezvous

Phase Analysis:

a. Sensor requirements for rendezvous are within the present state of
the art.
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bo The injection and active rendezvous phases can be performed with

sufficient accuracy to eliminate the need for a midcourse correc-

tion.

c. There is a direct relationship between sensor inaccuracies and fuel

cons umption.

In general, the analysis technique used for this study has been to select

as basic, as simple, and as representative a system as possible to study with

regard to sensor requirements. As a result, the sensor accuracies derived

may, in general, be considered to be fundamental to the mission phase con-

sidered, rather than dependent upon the idiosyncrasies of a particular de-

tailed mechanization assumed. It is believed that the work presented in this

Part II document proves the feasibility and usefulness of this approach.

Sensor accuracy requirements are presented in sections of this report for

a variety of initial and terminal conditions. In the lunar descent trajectory

analysis, results are presented in the form of error coefficients, relating

sensor accuracy to terminal errors. For this phase a particular set of sen-

sor accuracies may be assumed, and an approximation to the terminal errors

can be obtained by multiplying the assumed sensor errors by the appropriate

coefficients and adding, in rms fashion, the results for each component of

terminal error.
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1. INTRODUCTION

This document presents the Analytical Solution to the specific problem

defined in Volume If; i.e., to determine navigation and control sensor require-

ments for local, or onboard guidance of manned or unmanned lunar missions.

The material presented herein is a compilation of the Analytical Solutions

generated under independent, but parallel investigations performed by the

Westinghouse Electric Corporation and the Raytheon Company.

In the era of interest (post-Apollo), a wide variety of space missions are

considered to be feasible. To ensure that the study effort is expended most

profitably, an order of mission priority is established in Volume II with the

aid of NASA. Manned lunar missions are given the highest priority, followed

by earth space station, unmanned lunar, and interplanetary missions in

descending order. The analysis pertaining to earth orbital rendezvous, which

presents the principal navigation and control problem associated with an earth

orbiting space station, is presented separately in Volume IV. Thus, the

material presented in this volume deals almost exclusively with navigation

and control aspects of lunar missions, with the emphasis on manned lunar

missions.

The Apollo mission profile is used as an example of a typical manned lunar

mission. The total Apollo missions can be visualized as a sequence of mission

phases: earth launch and midcourse injection; earth-moon transfer (mid-

course); lunar orbit; lunar landing; lunar ascent; lunar orbit rendezvous; a

second midcourse phase; and atmospheric reentry. The analyses reported in

this volume examine the problem of sensor inaccuracies in each of these

mission phases except the first (earth launch) and the last (atmospheric

reentry), which are omitted from this study because of the extent of prior

investigations in these areas. Much of the material presented is also directly

applicable to unmanned lunar missions. This is most true of mission phases

which take place in the vicinity of the moon; e. g. , lunar orbit and lunar landing.

411 _; the ...._-_*_^- _nd ''_'_"_] _]_q,,'_ investigated a_p rnn_pred _o

be onboard systems; i.e., they do not make use of earth-based communication

or computer facilities. It is considered that investigation of earth-based

navigation and control techniques as typified by DSIF would represent an

unwarranted duplication of effort.
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The intent of this study is to investigate navigation and control sensor

accuracy requirements in as objective a manner as possible. Thus, the

navigation and control systems used are defined only in as much detail as is

required to allow determination of the effects of sensor inaccuracies. Con-

sideration of system mechanization is kept to a minimum.

The general analytical approach is to ascertain the navigation and control

system performance degradation that occurs when sensor inaccuracies are

introduced. The measures of system performance used most often are terminal

position and velocity error, and fuel consumption. Then, sensor accuracy

requirements are generated on the basis of allowable performance degradation.
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2. MIDCOURSE GUIDANCE

2. i INTRODUCTION AND OUTLINE

In this section, system requirements are developed for onboard guidance

of a manned space vehicle on a lunar mission. In addition, the general

principles of space navigation on ballistic trajectories are discussed to

clarify some simple concepts which have been obscured by advanced mathema-

tics in other papers on midcourse guidance.

Subsection 2. Z gives a general description of the midcourse guidance

mission and also includes the qualitative problem definition from Volume II.

Subsection 2.3 contains the analysis, and in paragraph 2.3.1 a quantita-

tive definition of the problem is given. This paragraph also includes

derivation of equations representing guidance systems and four typical mid-

course trajectories. In paragraph Z.3.2, the equations which are used for

statistical analysis of the guidance system are developed. Paragraph Z.3.3

describes the digital computer program used for this statistical analysis

and paragraph Z. 3.4 includes a discussion of various types of measurements

and measurement errors.

Subsection 2.4 presents the results of the midcourse analysis. These

results include a general discussion of the scheduling problem for low data-

rate navigation systems. General principles of space navigation are presented

in paragraph 2.4. I. In paragraph Z.4. Z, a standard midcourse guidance

schedule is developed as a base for comparison and in paragraph Z.4.3, the

results of using the computer program to vary parameters of the onboard

system model are given. In paragraph 2.4.4, the effects of varying nominal

trajectory parameters such as flight time and target altitude are investigated.

In paragraph 2.4.5,. pertinent error sources not included in the computer

program are discussed, and results from other studies are extrapolated to

the onboard system analyzed here. In paragraph 2.4.6, the results of try-

ing systems other than the basic onboard optical system are given. Included

in this paragraph is a brief comparison of onboard and ground-tracking sys-

tems. Statistical quantities are I_ unless otherwise stated.

The conclusions drawn from the analysis are given in subsection 2.5.
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The following list of symbols defines the notation used in this section:

R

_e' _m' _s

X, Y, Z

X , Y ,
m m

t

t
o

_o

r , r
e m

T

AX, AY,

x(t)

F(t)

(t, t o)

E( )

y_(t)

H(t)

n_(t)

u (t)
n

B(t)

_n (t)

M(t)

_*(t Z , tl)

P(t)

Z
m

• ..etc

SUMMARY OF NOTATION

Range from planet center

Gravitation constants of earth, moon, sun

Spacecraft position components

Moon position components (in earth-centered nonrotating

cartesian coordinate system)

Time

Time of launch into lunar trajectory

Longitude of moon at to measured in lunar orbit plan

positive from the ascending line of nodes

Inclination of lunar orbit with respect to earth's equator

Earth and moon radii

Orbital period of moon

Deviations of spacecraft trajectory from nominal trajectory

Six component state vector whose components are AX, AY

Time-varying matrix composed of partial derivatives

from nominal trajectory

Transition matrix which relates state deviations to t to

state deviation at t o

Expected value

Measurement (may be vector or scaler)

Matrix relating observables to state variables

Measurement noise

Gaussian noise which is forcing function in measurement

noise process

A matrix related to measurement noise process

Transition matrix of noise process

Augmented H-matrix

Superscript (*) used to denote that augmented state vector

x* is being considered. Also _*, P*, K*, Q-",'

Covariance matrix of estimation errors
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I
I

I
I

I

i

I
I

I

l
I

I
l

lO
I

I

I

I

I

K(t)

x

A
x

Q

Ai(t k)

O..

1j
I..

11

Av

E

C

G I

N

V

S'

2
(7
E

2
0

Y

u (or Av)
Z 2

a , (7 ,
X

Z
(Y,_ ,
X

Tr( )

aZ

k. z
1

2
*°l_l

y z
2 2

,...a.
y z

Weighting matrix, used to weight each new observation

Error in the estimate of x

Estimate of x

Variance of measurement errors

Measured angle between star and earth or moon reference

point

3 x 3 submatrix of_(t., T,) where t A is the nominal time/-k K
of arrival at periselenum

i x j null matrix

i x i unit matrix

Commanded velocity vector

Error in applying velocity correction

Gonvariance matrix of errors in measuring the velocity

correction

Matrix relating estimated state to commanded correction

velocity

Govariance matrix of expected trajectory deviations

Govariance matrix of velocity corrections

Govariance matrix of errors in applying the velocity

corrections

Variance of errors in percentage magnitude of applied

velocity

Variance of errors in magnitude of applied velocity

correction due to pulse timing errors

Variance of erro=s in pointing direction of velocity correc-

tion vector

R_MS velocity correction magnitude

RMS values of trajectory deviations in each component

RMS values of estimation errors in each component

Trace of a matrix (sum of its diagonal terms)

Variance of optical instrument error

Variance of error in defining reference point on earth

(i=l) or moon (i=2)
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S

a

_h

_f

a, b,

V

r

v

Unit vector in direction of star used for angle measurement

Half-subtended angle formed by planet disc

Measurement of star elevation from near horizon

Measurement of star elevation from far horizon

Direction cosines of measurement star; i.e., components

of S

Range from spacecraft to horizon

Sum of rms correction velocities required during flight

E, M

a, d

J
1

2.2

RMS position deviation from nominal at t A (nominal time of
pe ris elenum)

RMS velocity deriation from nominal at tA

RMS error in position estimate at tA

RMS error in velocity estimate at tA

Earth, moon (in schedule tables)

Azimuth, declination measurements (in schedule tables)

First harmonic in earth's gravitational potential field

BACKGROUND FROM VOLUME II

2.2. 1 Discussion of Midcourse Trajectories

The Midcourse Phase is here defined as that portion of a lunar mission

between ejection from earth orbit into a lunar trajectory and retrothrust into

a lunar orbit or direct descent. Atypical earth-moon trajectory is shown in

figure Z-I.

The space vehicle is accelerated by rocket engines until it achieves near-

escape velocity at a point about 175 degrees from the predicted earth-moon

line at arrival. The vehicle is then allowed to coast on a long earth-centered

elliptical trajectory whose major axis is about twice the earth-moon distance.

As the vehicle approaches the lunar gravitational sphere of influence, the

trajectory is gradually perturbed and the vehicle goes into a moon-centered

hyperbolic trajectory. If a large retrothrust is initiated as the vehicle passes

close by the moon, a lunar orbit can be achieved.

The trajectory shown in figure 2-1 is typical of the type of trajectory which

can be used to achieve a lunar orbit. This trajectory is circumlunar; i.e., if

no retrothrust at the moon is made, the vehicle will return to the vicintiy of

the earth.
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Figure Z-1. Geometry of Midcourse Guidance
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2.2.2 Qualitative Problem Definition

In Volume If, Section 4, the guidance problem for the Midcourse Phase is

stated as follows:

"Determine the guidance system requirements and techniques necessary to

achieve the guidance of a manned space vehicle to a preselected point above

the lunar surface with a velocity such that appropriate landing techniques may

be used. The following constraints are imposed on this guidance system:

Near-minimum fuel expenditure, reliability consistent with manned operation,

and compatibility with predicted post-Apollo launch and spacecraft equipment. "

To determine system requirements for midcourse guidance, models for

analysis are generated in a qualitative way in Volume II. These models consist

of a nominal trajectory and a hypothetical guidance system. The general

characteristics of the models chosen are listed in tables 2-I (trajectory models),

Z-Z, and 2-3 (system models) and are discussed in the following paragraphs.

In table 2-1, four earth-moon trajectories are listed. These trajectories

were chosen so that their features would illustrate the effects of different

nominal trajectories on guidance system requirements.

Trajectory Iis representative of a typical trajectory for a manned lunar

mission and has parameters similar to those proposed for the first Apollo

mission. This trajectory is the one on which most of the analytical results

in this study are based, and other trajectories are used for comparison.

TABLE 2-i

GENERAL CHARACTERISTICS OF MODEL TRAJECTORIES

T raj ecto ry Cha racte ristic s
No.

I

II

III

IV ¸

In-lunar-plane launch from 185-km earth parking orbit to 200-kin

periselenum in 72 hr. Arrival near maximum declination of moon.

Same as trajectory I, except that flight time is 63.9 hours to a

133-kin periselenum.

Same as trajectory I, except that trajectory plane is tilted 27.5

degrees to lunar orbit plane and vehicle arrival occurs at 0-degree

declination (descending)of moon.

Same as trajectory I, except that periselenum altitude is 100 kin.
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TABLE 2-2

MODEL FOR ANALYSIS OF ONBOARD GUIDANCE REQUIREMENTS

Item Description

Observables

Sensor device

Navigation method

Guidance logic

Control mechanization

Control command monitoring

Single angle between star direction and land-

mark or horizon on earth or moon.

Onboard optical instrument.

Use of minimum variance technique to statis-

tically weight data. Use of linearized de-

viations about reference trajectory.

Fixed time of arrival.

High-thrust rocket motor.

Onboard accelerometers (3-axis).

TABLE 2-3

GROUND TRACKING MODEL FOR ANALYSIS

Item De s c ription

Stations

Observables

Accuracies

Data rates

(3) Johannesburg, Rosman,

(6} Johannesburg, Rosman,

Houston, and Madrid

Carnarvon,

Carnarvon, Hawaii

Transponder range and range rate

10 meters - 24 meters (1 _ range accuracy)

0.077-0. 237 m/sec (1 cr range rate accuracy)

(1 pt/min and 1 pt/lO min)

Trajectory II is used to determine the effects of quicker flight times and

the attendant higher velocities. Trajectory III is used to determine the effect

of an out-of-plane (of the lunar orbit) flight. Trajectory IV is used to deter-

mine the effect of changes in the periselenum (point of lunar close approch)
altitude.

In Volume II, Section 4, it is shown that all reasonable midcourse navigation

schemes can be classed under the three general headings of ground tracking,
onboard passive methods, and onboard active methods and that onboard active

methods are not considered because of their large power requirements. There-

fore, this analysis is concerned with ground tracking and onboard passive

methods with emphasis on the latter since the capabilities of ground tracking

systems have been thoroughly investigated and reported by the Jet Propulsion

Labo rato ry.
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Tables Z-Z and 2-3 describe the characteristics of the onboard optical

angle-measuring system and the ground tracking system assumed as naviga-

tion system models in this study. The ground tracking system model was

taken from Ref. 2-I, which was used as a reference for comparison of on-

board and ground-tracking results. Figure 2-2 illustrates the type of angle

measurements made in the onboard system model. In the figure, it can be

seen that each observation consists of the measurement of the angle between

some star direction and some reference point on the earth or moon, either a

landmark (at close ranges) or the horizon (at long ranges or when surface

features are not visible).

_ "It STAR

CLOSE RANGE SPACECRAFT

HORIZON STAR
DIRECTION

SPACECRAFT

LONG RANGE

175 OC- VB-I

Figure 2=Z. Angle Measurements for Onboard System Model

A summary of the characteristics chosen for the onboard system model is

given in table 2-2. The feasibility of using single-angle measurements (i.e. ,

sextant-type measurements) was shown by Battin (Ref. 2-2). Although single-

angle measurements are considered the principal type of observable in this

study, double-angle (theodolite) results are also studied for comparison. It

is assumed that each measurement is taken by a human operator, but this is

not necessary.

The navigation computation method used consists of the minimum variance

method. This method uses partial orbital data, such as the angular measure-

ments, to update the trajectory estimate by means of a linearized recursive

procedure wherein each observation is statistically weighted according to
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the a priori estimate of measurement error and trajectory estimation un-

certainty. The advantages of this process are:

a. It gives a minimum variance estimate of the trajectory, utilizing all
information available.

b. It is a recursive procedure, so that previous measurements need

not be stored.

Fixed time of arrival (FTOA) guidance logic is used to compute commands

for the high-thrust velocity correction motor, the performance of which is

monitored by a 3-axis accelerometer system. FTOA, though not necessarily

most economical, is a reasonable guidance method for lunar missions because

of the relatively small corrections required during midcourse (_25 m/sec

for three corrections).

In table 2-3, characteristics of the ground tracking model used in this

study are given. Everything about this system (navigation computations,

guidance laws, and mechanization) is identical to the onboard case except for

the observables. For ground tracking, the observables consist of the range,

range rate, and angle measurements obtained at the tracking stations listed
in table 2-3.

2.3 ANALYSIS

2.3. 1 Quantitative Problem Definition

The qualitative problem definition in paragraph 2.2.2 consists of trajectory

models and guidance system models. To define the guidance problem quantita-

tively, specific trajectories must be generated, and equations describing the

operation of the guidance system models must be written. In paragraph

2.3. I. I, the equations used for trajectory generation are derived and numerical

values for the astronomical constants used in this study are given. In para-

graph 2.3. 1.2, the fundamental guidance problem is discussed; in paragraphs

2. 3. 1.3 and 2.3. 1.4, equations describing the spacecraft navigation and

guidance systems are developed.

2.3. !. ! Trajectory Com.putation

The astronomical model assumed in this (midcourse) study consists of a

spherical homogeneous earth and moon and their gravitational potential fields.

Although on an actual mission at least the sun's gravitational field and the

first term in the earth's oblateness must be considered, these are not

necessary for a parametric analysis of guidance requirements. In other

words, the astronomical model assumed here results ina gravitational field
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which is similar to that which actually occurs, as far as its effect on space-

craft position and velocity is concerned. In addition to this approximation

to the actual potential field, the moon's motion about the earth is assumed to

be circular rather than slightly elliptical as in the real case. Again, this

is not expected to have much effect as the moon travels only 30 to 40 degrees

around the earth during a lunar flight; over this short arc, the circular

approximation is reasonable.

Since velocity corrections during the Midcourse Phase of a lunar mission

are brief, it can be assumed that the spacecraft is in free-flight, throughout

most of the flight; i.e., it is acted upon only by gravitational forces. The re-

stricted equation of motion for a particle in space acted upon by n gravitational

bodies is (Ref. Z-3):

 _Rvi --Rri3]

-Rvr_r
- f _i {Z-l)

"v l
where R is the position vector, ix. is the gravitational constant of the ith

n 1
planet and the subscripts v and r refer to the vehicle and the planet at which

the reference coordinate system is located.

Assume an earth-centered nonrotating coordinate system as shown in

figure Z-3 where the Z-axis is along the earth's north pole. The position of

the space vehicle and the moon are (X, Y, Z) and (X m, Ym' Zm) respectively.

With this coordinate system and the assumptions of only earth and moon

gravity and the moon moving in a circular path about the earth, equation Z-I

can be written in three components as follows:

X _ ixm X

"" ixe m {X - Xm) m (Z-Z)X= 3 3 3
R R R
e vm m

Y _m ixm Y• " ixe m
Y= (Y-Y)

3 3 m 3
R R R

e vm m

: _ ixe Z _m (Z - ] }_m Zm
3 3 Zm" 3

R R R
e vm m

whe re

R =JX 2 + y2 + Z 2
e
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J 2 ZR = X +Y
m m m

2
+Z

m

R =J(X - Xm) 2
vm

+(x-Y )2+(z-z )2
m m

and _e and _m are the gravitational constants of the earth and moon,

respectively.

Z

EARTH (0,0,0)

VEHICLE (X,Y,Z)

MOON (X m,Y m ,Z m )

1750C- VA- 2

Figure 2-3. Earth-Centered Coordinate System

The moon's rotation about the earth is described by:

X = R cos + d_om m T (2-3)
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Jrr (t - to)
Y = R sin +m m Y ¢o cos

fzzr(t -t ) JZ = R sin o
m m m + %b0 sin

where R m is the earth-moon distance, _ is the inclination of the lunar orbit

plane to the earth's equator, T is the lunar orbital period, and _o is the angle

between moon's ascending line of nodes (0 degree declination) and the earth-

moon line at t = to (time of injection into the lunar midcourse trajectory).

Thus, the motions of the spacecraft and the moon in the earth-centered

coordinate system are completely specified by equations Z-2 and 2-3.

Equations 2-2 are nonlinear differential equations to which there is no known

general solution. However, solutions to these equations may be obtained for

any time point by specifying six initial conditions and integrating the equations

by numerical techniques. In this way, the time history of the vehicle's

position and velocity can be generated.

Thus, for the model chosen, the vehicle trajectory can be. completely

determined by specifying the initial conditions Xo, Yo, Zo, Xo, Yo, Zo, and

_o at time t = t o and the constants _e, _m, T, _, and R m. The values used

in this study for these constants and the radii of the earth and moon are listed

in table 2-4.

TAB LE 2-4

PHYSICAL CONSTANTS

Quantity Symbol Value

Earth-moon distance

Inclination of moon's orbit

Lunar period

Earth gravitational constant

Lunar gravitational constant

Earth radius

Moon radius

RITI

T

P'e

_m

r e

rl, rl

382,830 km

27.55 degrees

2. 3587 (106) sec (Z7.3 days)

3. 986135 (1014 ) m3/sec Z

4. 8982 (1012) m3/sec Z

6378 km

1738 km

A digital computer program was written to solve equations 2-Z for various

trajectories. This computer program is described in paragraph Z.3.3.

g.3. I. 2 Midcourse Guidance Problem

Present-day launch and injection equipment is not sufficiently accurate to

deliver a space vehicle to the vicinity of the moon with the precision required

on a manned mission. Thus, some trajectory corrections will be required
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during the flight to reduce the miss distance from thousands of kilometers

(with no corrections) to several kilometers. The first correction, normally

made 10 to 15 hours after injection, removes most of the launch errors and

succeeding velocity changes are vernier corrections on the previous maneuver.

Information for making each of the velocity corrections is obtained by revising

the trajectory estimate according to the data measured during the flight.

Figure 2-4 is a functional block diagram of a generalized space guidance

system. Observations of the vehiclets translational state (position and veloc-

ity) are used to revise the original trajectory estimate and produce an improved

estimate of the vehicle's trajectory. This improved estimate is then used

to generate velocity correction commands which will reduce the predicted

miss distance. The velocity corrections can be monitored by additional sen-

sors (accelerometers) to evaluate the accuracy of each velocity change and

thereby make a more precise trajectory estimate.

OBSERVABLES

STATE OF
TRAJECTORY
DYNAMICS

SENSORS t

INITIAL [

TRAJECTORY

ESTtMATE

1
OBSERVEDI JDATA Y NAVIGATION

COMPUTER

NAVIGATION

UPDATED

ESTIMATE

OOAR'ECTtON

COMMAND VELOCITY

CONTROL (_V) CORRECTION

ACTION CGMPUTER

GUl DANCE
CONTROL LOGIC

t 750C- V'B-3

Figure Z-4. Functional Block Diagram of Space Guidance System

Figure Z-4 shows that the guidance system is actually a feedback control

system. However, during the Midcourse Phase, the control action is so

brief that the system is actually operating open-loop most of the time.
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Since this is the case, the navigation (estimation) and guidance-logic and con-

trol aspects of the problem can be analyzed independently. This was the pro-

cedure actually adopted during this study.

g.3. 1.3 Navigation Equations

The navigation problem for the Midcourse Phase can be stated as follows:

Given some initial estimate of the vehicle's translational state (position and

velocity) at t = to and some noisy observations of the vehicle's state in the

time interval t = [to to tk] , what is the best estimate of the vehicle's state

at t = tk and its future state (t > tk)? This problem has been solved for space

trajectories by the Weighted Least Squares data processing technique, in

which the a posteriori distribution of injection conditions is maximized for

the data points received. A difficulty involved in using this technique is that

it is required to invert a matrix whose rows are equal to the number of

measurements taken; i.e., the total set of observed data is used on each

estimate.

The minimum variance technique, applied to space navigation in 1961 to

1962 by G.S. Smith, S. Schmidt, et. al. at Ames Research Center avoids

this problem through use of a recursive technique for generating the minimum

variance weighting coefficient at each observation. Thus, only the latest

trajectory estimate and the most recent observation are required to generate

the new estimate. In addition, the minimum variance technique incorporates

the a priori estimate of the observation error, as does the Weighted Least

Squares process. In fact, the two processes give the same results, under

certain conditions, but the computational simplicity of the minimum variance

equations has led to their use in this study.

The following analysis is devoted to deriving the minimum variance equa-

tions for orbit determination. All this work was originally reported in Ref.

Z-4, but since the treatment in that paper divides the derivation between the

appendix and text and since several steps are omitted, it is repeated here.

To apply the minimum variance technique, it is necessary to linearize

the equations describing the vehicle motion (equation 2-2) since the technique

was developed for application to linear systems. Writing equations 2-2 in

symbolic form:

X = fl (X, Y, Z, t) (2-4)
.o

Y = f2 (X, Y, Z, t)

= f3 (X, Y, Z, t)
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The usual technique is to utilize linear difference equations in terms of the

deviations from some reference trajectory, rather than the actual coordinates.

Letting XR, YR, ZR represent the coordinates on the reference trajectory and
performing a Taylor series expansion on equation 2-4 at some time t there is:

afl Ofl _fl

(J_+ _J_) = fl + (-_) _X + (-_) AY + (-_) _Z + H.O.T. {2-5)

.. df Z t}f Z af Z

IY+_I =fz+la-__x+I_l_Y+I-A1_z+..o.T.

_+ _I =% +I_-)_x+la_--_3yl_Y+¢_a-_l_z+H.o.r

where AX = (X - XR) , Ay = (y - YR), etc, the partials are evaluated on the

reference trajectory at time = t and H.O.T. = higher order terms. Sub-

tracting equation 2-4 form Z-5 and ignoring the higher-order terms:

_X = (_-) _X + {aa-_)_Y + {_zI) z_z (z-6)

Of af 2 af 2
_: =_ _x +c-AI_Y++AI _z

Of _f3 Of3

where equations 2-6 are now linear in the difference quantities AX, Ay, and

_Z. To write equation 2-6 in standard matrix form, define the deviation

state vector xas the 6-vector whose elements are _X, _Y, AZ, A:_, AY,
AZ. Then:

. ,m

AX

AY

AZ

.F .._. AX

Ay

AZ
m

0 0 0 1 0 O"

0 0 0 0 1 0

0 0 0 0 0 1

Ofl

10X

I Of Z

IOf 3

k_

Of 1 Of 1
-- -- 0 0 0
aY @Z

#fz # fz

a---f a---Z 0 0 0

_f3 _3

a-'_ a-"£ o o o

D .

Z_X

_Y

_Z

Z_X

_Y

_Z

(z-7)
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Writing this as a matrix equation:

x (t) = F(t) x(t) (Z-8)

where F(t) andx(t) are defined in equation Z-7. Equation Z-8 is the matrix

differential equation representing the linearized equations of motion of the

spacecraft.

It is known (e. g. , Ref. i-5) that an equation of the following form:

x(t) = F(t) x(t) + G(t) co(t)

has as its general solution:
t+At

x(t + At) = _(t + At, t) x (t) +ft
(t,T) G (T) _0 (T) dT

(z-9)

(z-10)

where@(t, t o )is defined by_ = F(t)@ anddP (t o , t o ) = I.

Therefore, the general solution to equation 2-8 is:

x (t + At) =_ (t + At, t) x(t)

since the forcing function, _0(t) = 0.

(Z-ll)

Equation Z-ll shows how, in the absence of any input, the state deviation

vector x (t + At) is determined entirely by its initial value x(t) and the

"transition" matrix _ (t + At, t). This transition matrix has the properties

that _ (t, t) = I and _ (to, t) = q) (t, to). The transition matrix can be thought

of as a time-translation matrix which determines the way in which the com-

ponents of the state vector (in this case the deviation quantities ZkX, Z_Y . . .

Z_Z) vary as a function of time. In this study, the _ matrices were computed

numerically for each of the trajectories, using a 6-minute At. See Volume

V, Appendix B, Section I for detailed description of this computation.

Knowing the @ matrices and initial state x (to) (which corresponds to the

injection conditions) the state x(t) at any later time can be determined

directly by equation Z-11, assuming that the linear reiationships hold. How-

ever, the injection conditions, x(to), are never known exactly, and statistical

methods must be used.

The use of statistical methods on vector quantities such as x requires

the introduction of covariance matrices for second-order statistical analysis.

Defining x as a 6-vector whose components are random variables representing

the deviations from some reference trajectory, then the covariance matrix of

x is given by
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cov x: E(x_xT)_ : E

z  xaY  xAz  xAx  xAY AXAZ

_Y_X (AY) Z AYAZ AYAX AYAY AYAZ

z

AZAX AZ_Y AZAZ AZ_X AZAY (_)2
B

If the random variables AX, etc have zero mean, then it can be seen that

the terms along the major diagonal represent the variances of the individual

components while the cross terms are the product of the standard deviations

of each of the variables and the correlation coefficient.

Equatio n Z-11 is a linearized model of the dynamic process by which the

initial uncertainties propagate along the trajectory. Now assume that during

the course of the flight, some observations, y(t) are made, where the observa-

tions are related to the trajectory deviations by the relation:

y(t) : H(t) x(t) + n(t) (Z-IZ)

where n(t) is the additive noise on each observation and H(t) is the matrix rela-

ting the observables to the state variables. Assuming that the noise n(t) can be

represented as the output of a linear dynamic system excited by white noise,

then:

i(t) = B(t) n(t) + _n(t) (Z-13)

whereun(t ) is the Gaussian noise input. Just as equation Z-8 represents the

dynamic process governing the trajectory uncertainties, equation Z-13 repre-

sents the dynamic process governing the observation noise n(t), the difference

being thatun(t ) is an input in equation 2-13, whereas equation Z-8 has no forc-

ing function. The solution of equation Z-13 is:

t+At

: (t + At, t) n(t) +/t On(t + At, r) u n (r) dr (Z-14)_n(t + £_t) O n

where • n is defined by On(t) = B(t) O n and On(t, t) = I. Equation Z-14 is

the solution of the equations representing the time-varying error process

and is analogous to equation Z-If for the trajectory deviations. Defining:

t+At

u' =; O (t + At, r) Un(r) dr (Z-15)

"t n
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then equation 2-14 and 2-11 can be written:

x(t + At) = _ (t + At, t) x(t)

_ = (t + At, t) n(t) + u'n (t + At) _n

(z-16)

Equations 2-16 describe the dynamics of both the trajectory deviations and

the observation noise. Adjoining the two equations, there is:

[]I]:o00 %
t+ t

x]n U I

t

(2-:7)

Now, defining the "augmented" state vector, x* as the vector consisting

of both the trajectory deviations and the observation noise, equation 2-17 can
be written:

x2:' (t + At) = _ ::-"(t + At, t) x'_(t) + U

whe re

E:ol_':" = and U =

The observation process,

z(t) = M(t) x*(t)

where:

(2-18)

equation 2-12, can now be written:

(2-19)

Equations 2-18 and 2-19 represent the state of the system and observations

of the state, respectively. The estimation problem can now be re-stated:

Given a dynamic process described by the state equation 2-18 and some

observations of the process, y(t), y(tkl), y(tk2), what is the best estimate

of the state of the system xa(tk) at some time tk? Constraining this "best

estimate" to some linear function of the observations y(tkl), Kalman derived

a recursive solution to the above problem {Ref. 2-6). The solution is given

by:

:*(t k) =_* (t k, tk_ 1) :*(tk_l ) + K*(tk)(Y_(tk)- M(t k) _ (t k, tk_l):*(tk_ 1)}

(2-20)
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K,(tk) = p,(tk)MT(tk) {M(tk) p,(tk)MT(tk) } -1

P*(tk+l) = , "t.( k+l ' tk) {P*(tk) - K*(tk) M(tk) P::"(tk}**T(tk+l t k )

(2-21)

+ Q':" (tk+ 1' tk)
(2-22)

where

O.( k+l tk) =

and

f tk+l { T)} TQ' = u (T _ d_
-- --n n (tk+ 1 tk)

tk _n(tk+l' tk) E Un(T)

^ ,

Also P*(tk) is the covariance matrix of the error in the estimate x:_(tk);
i.e.:

P*(tk) = E(__*(tk) __*T(t k)

where _* = x* - A.. Thus, the formulation of the estimate includes the

generation of estimated error in the estimate.

The notation is different in Ref. 2-6, as explaned in Volume V, Appendix

B, Section 2.

The recursion relations in equations 2-20, 2-2I, and 2-22 soive for the

minimum variance estimate of x*{t) or both x(t), the state deviation vector

and n(t), the measurement noise. Now, assume that the noise on the measure-
ments is uncorrelated from one measurement to the next. This is a likely

situation in the case of a iow data-rate optical observation system (but not

likely in the case of a high data-rate radar ground tracking system). In any

case, if the measurements errors are uncorrelated, then the portion of x*(t)

relating to the noise n(t) need not be computed and equations 2-20, 2-21, and

2-22 can be simplified to the following forms (as shown in Ref. 2-4, Appen-

dix D).

_(tk) = _ (t k, tk_ 1) __(tk_l ) + K(t k) {Y(t k) -H(t k) ¢_(t k, tk_ 1) _(tk.1) } (z-z3)

-1

H T {H(tk) P(tk) HT(tk) + Q(tk )}K(tk) = P(tk) (t k)
(2-24)
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P(tk+l) =C_ (tk+ l, t k) {P(tk)- K(tk)H(tk)P(tk) } ¢_ T(tk+ l, t k) (2-25)

where Q(tk) is the covariance matrix of the measurement noise, and H(tk) the

matrix relating the observationsy(tk) to the state x(tk), as shown by equation
2-12.

The derivation given is not the simplest; since using the assumptions of

uncorrelated measurement noise and an estimate which is a linear function of

the measurements, a very simple derivation can be achieved as shown by

Battin in Ref. 2-2 (see also Volume V, Appendix A, Section 5). The derivation

shown in this paragraph is used to supply some of the missing steps in the

derivations of Ref. 2-4 and also to show the analytical foundation for use of the

augmented state vector formulation which can be used to estimate systematic

errors, (see Volume V, Appendix B, Section 7).

In this study, it was assumed that equations 2-23 through 2-25 represent

the navigation equations used in the guidance computer. For simplicity in

discussion, the equations are rewritten here with all time arguments assumed

to be tk except where subscripted:

^ [ ]__ =cI____k_l + K y - H_Xk_ 1^

K = PH T {HPHT + Q} -1

Pk+l = _k+l [P- KHP] _Tk+ l

(2-26)

(2-27)

(2-28)

A
Equation 2-26 shows how the state deviation estimate x, is updated each

time a measurement [ is made. _ X̂k-I is the estimate of x at t k without any

measurement. Thus the predicted measurement is H__k_ 1 since H relates

the observables to the state deviations. The difference between the actual

measurement [ and the predicted measurement is weighted by the matrix K
^

and this result adds to the quantity _Xk_ 1 which is the estimate of x at t k if
no measurement is made.

It is clear that the key to this process is the weighting matrix K, Mnce K

determines how heavily the new data will be weighted compared to the best

previous estimate. In equation 2-27, K is seen to vary inversely with O., the

covariance of measurement errors. Thus, the greater the assumed measure-

ment errors, the less heavily will new data be weighted compared to the

previous estimate.
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Equation 2-28 shows how P, the covariance matrix of estimation errors,
is reduced after each measurement. This reduction is given by [P - KHP] B

The operation_Pk+l(_ ) Q_Tk+ l shows the time-transition of P betweenL

.$

measurements.

Equations 2-26 through 2-28 represent a general data-processing system

which can be used to solve any estimation or prediction problem, given the

assumption of uncorrelated errors. Next, the application of these equations'

to the space navigation problem is discussed.

First,

in paragraph 2.2.2.

follows:

^

x
--O

P
O

consider the onboard, optical angle-measuring system described

The quantities required for the recursion process are as

The initial estimate of trajectory deviations

The initial covariance matrix of trajectory estimation

errors

_I' _2' etc

H(tl), H(t2), etc

Q

The transition matrices between measurement time

t andtl, t 1 andt 2, etco

The matrices showing the relationships between the

measurements X and the state x

The covariance matrix of measurement errors.

^
The starting points for the recursion equations are Xo, Po and _ (tl, to) ,

the transition matrix between t = to and the first measurement at t = tl. After

this measurement is made the updated estimate of trajectory deviations is

given by:

[ ^]^ =_ _ + K1 Yl - H1 _ {tl to) XoXl (tl' to) --o

-1

T[H PIHIT + Q]K1 = Pl HI 1

(2 -29)

(2-3o)

Pl = _ (t 1, to)[Po]_T(tl , to) (2-31)

where Ko H o Po = 0 in equation 2-31 since no measurement was taken at t o .

The procedure thus described is repeated throughout the estimation process

each time a new measurement is made.

The fact that, in the system being described here, each observation consists

of only one angle results in some simplification of the computations. For one

thing the measurement yis now a scalar, and Q is just a scalar (the measure-

ment variance) as is the quantity HPH T, so that matrix inversion in equation
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2-27 is not required. Then H is a row matrix consisting of the partials of the
angle with respect to each coordinate. Thus

[0_ O _ O_ 0 0 0] (2-32a)H -- a--f a--f

The partials in H are time-varying, of course, and are derived for each

of the various measurement types in Volume V, Appendix B, Section 3.

Although the primary concern is with onboard optical systems, it is to be

noted that as far as the analysis is concerned, the only difference between

the computations required for onboard and ground-tracking systems is in

the H-matrix. For a ground tracking system using range as the observable,

then:

H = --_ 0Y 0Z 0 0 (2-32b)

The equations 2-32 complete the derivation of the equations used in the

navigation system model being investigated. Equations _.-26 through 2-28 are

the navigation equations and other required quantities are _o, the initial

estimate, Po, the assumedcovariance of initial errors; the transition (_)

matrices; the H-matrices and Q, the assumed measurement variance.

It should be pointed out here that two significant error sources will

probably be present on an actual mission that are not considered here. These

are:

a. Bias or other time-correlated measurement errors

b. Uncertainties in the astrodynamic constants.

These errors are discussed in paragraph 2.4.3. It has been shown (Ref. 2-7)

that the mathematical formulation of equations 2-26 through 2-28 can be used

in an actual system even in the presence of bias errors and astrodynamic

uncertainties, by using a larger value for Q, the measurement variance, than

would ordinarily be assumed.

Another problem not considered here is the errors due to nonlinearities.

In the formulation of equations 2-26 through 2-28, it is assumed that the

equations of motion governing x and the relationship between_x and the

measured angle y are linear. Since neither of these assumptions is true,

there is some inaccuracy because of the linear approximations. However,

this error will be small as long as the deviations from the reference trajec-

tory are not large. This will be the case if the estimated trajectory is used

for reference rather than the preplanned nominal trajectory. In this study,

it is assumed that the estimated trajectory is used as the reference trajec-

tory.
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2.3.1.4 Guidance Equations

The previous paragraphs are concerned with developing equations for the
navigation phase of the midcourse guidance problem. This is only half the
computational problem. Having determined the spacecraft deviations from
the reference trajectory, it remains to predict target deviations and compute
and apply the thrust required to null out or reduce the predicted miss distance.

From a computational and analytical standpoint, the simplest type of space

guidance is the use of an impulsive velocity change to null out the predicted

miss distance at nominal time of arrival. Although this type of guidance logic

is not a minimum-fuel correction scheme, the correction velocities required

in midcourse are small, and the simplicity of this fixed time of arrival (FTOA)

guidance weighs in its favor. Therefore, in this study, it is assumed that all

trajectory corrections are high-thrust impulsive velocity changes designed to

null out the predicted miss distance at nominal time of periselenum.

The onboard computations required for this guidance are now derived.

Equation 2-11 shows how the transition matrices are used to determine the

trajectory deviations at some future time (t + At) from knowledge of these

deviations at time t. Thus, letting t_ equal the time at which it is desired to
£5

make a correction and t A equal the nominal time of arrival at periselenum,

deviations at t A are given by:

x(tA) = _(tA, tc) x_(tc) (2-33)

where the x's are six vectors (three position components and three velocity

components) and 4)(tA, tc) is a 6 x6 matrix.

Letting _) (tA, tc) = A and rewriting equation 2-33 in partitioned form:

= A3 A4 _-C (2-34)

where A , A , etc are 3 x 3 submatrices of A, and r and v are 3 x 1 vectors of
I 2 -- --

position and velocity deviations from the reference trajectory.

Since a single impulsive thrust can correct only three components of the

predicted deviations at tA, it is assumed that the velocity correction vector

(A v) is applied in such a way as to null out the predicted position errors at

tA. This is reasonable, since mission safety depends most strongly on

position errors and the velocity deviations from the nominal at tA are elimi-
nated by the large retrothrust required to inject the vehicle into a lunar orbit.
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If the correction (_ v) is applied to reduce the predicted position error
(rA) to zero, then equation 2-34 becomes:

'A [ A3 A4 V--C +
J

(2-35)

where v'A is the new predicted velocity deviation at periselenum.

the first line of the matrix equation 2-35, and solving for _v:
u

O31 = A 1 r C + A 2 (vC + Av)

-I

&v_ = - A2 AI rc -- -Y-C

Expanding

(2-36)

(2-37)

(2-38)

av_ = G C' x (t C)

' -i _!owhere GC = "_2" A1 I3 n"
any t C is computed as a f

(2-39)

Thus, the indicated velocity correction at

of the deviation at that time.

The estimate of the state deviations x' (tc) after a velocity correction is:

F I -
x (tc)=x (tc) + L=v + AV] (2-40)

where A_ is the error in _naking-the correction.

After a correction is made, not only must the three velocity components of

x(tc) be revised, but also the covariance of estimation errors must be increa-

sed'Secause of the uncertainties involved in measuring the velocity change.

Partitioning the covariance matrix P,

Then, after a correction"

P P

PC = I 2

(P4 + C

such that:

(2-41)

(2-42)

where C is the assumed covariance matrix of errors in measuring the velocity

correction. The derivation of equation 2-42 is simple enough; the steps are

shown in Volume V, Appendix B, Section 4.
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Z.3. Z Statistical Analysis of Errors

In the previous paragraph, the equations describing the operation of a guid-

ance system model have been derived. To analyze the performance of such a

system using different system parameters and different trajectories, one

might attempt a Monte Carlo analysis, employing equations 2-26 through Z-Z8

and the actual equations of motion. Such an approach would be impractical,

however, for two reasons:

a. The necessity for integrating the equations of motion on each trial

b. The necessity for making many runs on each set of initial conditions

in order to get statistically valid results.

These difficulties make the use of ensemble statistical analysis attractive. En-

semble statistical analysis consists in using average statistical quantities to

determine the guidance system performance over the ensemble of trajectory-

system models which have certain parameters in common. Ensemble methods

were used to generate the numerical data for this study.

Three statistical quantities are sufficient to specify guidance system per-

formance on an average basis:

P, the covariance matrix of estimation errors

N, the covariance matrix of deviations from the nominal trajectory

V, the covariance matrix of velocities required for each correction

These quantities are defined as follows:

P = E(_ __T)

^where _ = x - x

(z-43)

n

N = E (x x T) (2-44)
m

V. = E (_v. _v.T) (2-45)
1 _1 _1

Equations 2-27 and 2-28 show that P, the covariance of estimation errors,

can be generated using only Po, Q, H(t) and _ (t), i.e. , the estimate >_ is not

required. Thus, statistical information about the ensemble of flights-having

certain things in common can be developed. This procedure implicitly

assumes that the _(t) matrices and H(t) matrices on any flight are always rea-

sonably similar to the _ (t) and H(t) matrices computed from the nominal

trajectory. This will be true as long as the actual trajectory never deviates

far from the nominal trajectory. Thus, it can be seen that although the

navigation equations 2-26 through 2-28 can be utilized even in case of an

abort, the statistical analysis detailed in this paragraph is applicable only
in nonabort situations.

Equations Z-Z7 and Z-Z8 show how P is computed during periods when no

thrust is being made; when a correction is made, equation Z-4Z is utilized.
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N is the covariance matrix of deviations from the nominal trajectory, and

its calculation is required to determine the target miss.

T _T (tk, )1t )x x t o0 _0 _0

Since x k = _ (t k, to) --oX, then:

_(t k, t) N _To o (t k, to)

given N ,
O

N k =

Thus,

then the covariance of deviations at any later time

no velocity corrections are made.

(2-45a)

the covariance of initial deviations, and the_ matrices,

can be developed, so long as

The change in N when a velocity correction is made is rather complicated,

so is not given here, but is shown in Appendix B, Volume V, Section 4. Calling

N the trajectory deviations before the correction and Nc, the deviations after

the correction, N is given as:
c

:[ 00 +
where

G = _p33 033] = [03_
LA21AI I33 L_'j

and S is the covariance matrix of the errors made in applying the velocity

correction:

sIo
33 S' J

(2-47)

(2-48)

la 2 I 2 < u2133 )

g
2 °e

S' = + _ V + - V (2-49)
k 2 2

u

2 2
where o. and o are the variances in the thrust percentage accuracy and

k c 2
cutoff magnitude error, respectively, a is the variance in the assumed

pointing error and u 2 is the trace of V° YThus, equation 2-44 and equations

2-46 through Z-49 specify N over all periods of the trajectory.

The covariance of commanded velocity corrections at each maneuver is

given by:

( _vT) ( T) G'T : G, NG ,TV = E a_v _ = G' E x x (2-50)
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where G' is defined by equation 2-39

Having developed the covariance matrices P,

the pertinent rms quantities for guidance system evaluation.

P = E(____T), then:

x xy

yx y

z m

_'2

_'2

Y m

z

P-- E

m

B

N and V, one can then obtain

Since

P xy a_a%/

2

Y

m

m

2
(_,..
Z

I

2

x

2

Y

when X, Y, etc are assumed to have zero mean.

2

z

(2-51)

Thus, it can be seen that the P matrix is composed of the variances of

each component along the major diagonal, and the correlation coefficients be-

tween the variables (times the product of the standard deviations) as the off-

diagonal members. Then, since _, the rms position estimation error, is

given by

,_ [2 2 2

y z

Y =_/Tr (Pl)

where Tr indicates the trace and P.

P. Thus, by similar analyses, the 1

deviations, position and velocity estimation errors and velocity corrections

can be developed. These are:

r = w/Tr (N 1)

v = JTr (N 4)

Position deviations

Velocity deviations

Position estimation

errors

Velocity estimation

errors

Cor re ction velo city

(2-52)

(2-53)

is the upper left-hand 3 x 3 submatrix of

rms quantities for position and velocity

= J Tr (Pl)

JT (P4)v = r

i

Av : _/Tr (V)
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2.3.3 Digital Computer Programs

The previous paragraph describes the equations necessary to perform a

second-orderl-/statistical analysis of the guidance system described in para-

graph 2.3.1. Inthis paragraph, the digital computer program which was

utilized for parametric analyses of various systems is described.

Actually, three separate programs were used: one to generate nominal

trajectories, one to compute the_ matrices for each trajectory, and one to

determine the statistical quantities described in the previous section.

Generation of trajectories for the assumed astronomical model entails

integration of the equations of motion (equations 2-2 and 2-3) and printing out

results at various time points. This process is carried out by a digital pro-

gram using a fourth-order Runge-Kutta numerical integration routine. This

routine, written in double-precision for the IBM 7094, selects the size of the

integration step automatically to reduce the truncation error to less than some

preset amount. If the step-size is too small, roundoff error can become a

problem, but successive runs of the program with the same initial conditions

but employing different values of truncation error resulted in nearly identical

numerical results, indicating that roundoff error problems had been

eliminated by use of a double-precision routine.

There is no direct method of achieving desired end conditions by exact

choice of initial conditions in equation 2-2. However, since the requirements

on trajectory characteristics are not exact, an approximate method of linear

interpolation was used to obtain the desired trajectories. It was found that,

given an initial altitude, flight time can be controlled by choice of the initial

velocity magnitude, and that the inclination of the trajectory is determined by

the orientation of the initial velocity. Having chosen these parameters, it

remains only to specify the initial longitude of the vehicle in the lunar plane, _o"
It was found that the altitude of lunar close approach varies nearly linearly

with this initial angle, q_o. In summary, the procedure used to obtain trajec-

tories having desired characteristics was to choose initial position and velocity

components of the vehicle in order to achieve the desired trip time and plane

relationships approximately and then vary the initial position of the moon in its

orbit to adjust the altitude of periselenum passage to the desired value. This

method is not discussed in greater detail as more sophisticated and exact

methods are available and this study is not concerned with the trajectory de-

sign problem, per se.

1/ Second-order means that only second moments; i.e., variances are

employed.
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When the correct initial conditions are determined using the program just

described, it is required to generate a printout of trajectory parameters

(position and velocity in both earth and moon coordinate systems) and also

generate the transition (_) matrices described in paragraph 2.3.1.3. It was

decided, somewhat arbitrarily, to compute the trajectory parameters and the

_matrices at 6-rninute intervals over each trajectory. Thus, the_ matrices

generated are_(6-minutes, 0), _(12-minutes, 6 minutes) and so on. In

Section 1 of Appendix B (Volume V), the equations for generation of the

matrices are developed. In the computer program, the_ matrices are gener-

ated by simultaneous solution of equations 2-7 and 2-2.

The two programs described above serve to provide inputs for the statistical

analysis program which was the primary analytical tool used in this study.

The statistical analysis program is described schematically in figure 2-5.

INPUTS _)U TI_TS

• NOMINAL TRAJECTORY
AND _D MAT'RIC£S

• NAVIGATION &NO

CORI_CT1ON SCHEOULES

°_ ERRORS

• CORRECTION ERRORS

• INITIAL ERRORS D,

• LANDMARK (_

STRrlSTICAL

ANALY S_S

P, N,V, MATRICES

_rms POSITION AND

_IELOCITY DEVIATIONS (rm_l v)

--.-----_rms POSITION AND VELOCITY

(SI"IMATION ERRORS (_' onV v)

rms PREDICTED MISS DURING

FLIGHT ( rpR¢'_ )

..._4brm CORRI_TION V1ELOCITY (_=¥i)

175OC-Vl-4

Figure 2-5. Input-Output Diagram of Statistical Analysis Program

The inputs listed on the left side of the figure are the quantities which are

varied throughout the course of the study.

a. Nominal Tra)ector)r (and_ Matrices) - These include the four tra-

jectories described in paragraph 2.3.1. 1.
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b. Navigation and Correction Schedules -

at which observations and corrections are made,

observation (star-planet combination).

These include the list of times

together with the type of

c. Observation Errors - It is assumed that the observation errors are

uncorrelated from one measurement to the next and that the variance Q of the

observation errors is given by:

o =/oz +(ki/Ri)2 I2-SS)

where o is the error due to the optical instrument and k./R. is the error due
1

to the uncertainty of the reference point on the planet, (earth or moon). Thus

o, the sensor error, and k., the landmark uncertainty, are program inputs.
1

d. Correction Errors - These errors are described by equations 2-46

through 2-49. The program inputs are C;k2 , the variance in the thrust per-

centage2accuracy, at2, the variance of magnitude errors due to cutoff inaccuracy

and c_ , the variance of pointing uncertainties. In this study, it is assumed

that no correction monitoring is done.

e. Initial Errors - The initial uncertainty and deviation matrices are

assumed equal (P = N ), thus implying that no trajectory data is available
0

between transluna ° injection and the start of the midcourse navigation measure-

ments.

Program outputs are shown in figure 2-5. The most important criteria

for evaluation of the guidance System performance are the estimation errors

_' and T at periselenum, the deviation (miss} quantities r and v at periselenum

and the total correction velocity required, Y _v. In addition to this end-point

(periselenum) data, these quantities are also computed throughout the trajec-

tory to determine the usefulness of various guidance operations.

The equations used to determine these quantities are derived in paragraphs

2.3.1 and 2.3.2. A complete summary of the equations used in the computer

programs is given in Section 5 of Appendix B, (Volume V).

2.3.4 Analysis of Optical Measurement Errors

In paragraph Z. 3.2, equations are developed for the analysis of a guidance

system whose navigation measurement errors have a variance of Q and are

uncorrelated from one measurement to the next. In this paragraph, optical

angle measurement errors are examined in somewhat greater detail to deter-

mine the fundamental limitations on optical measurements.
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The various types of optical measurements which can be made are shown in

figure 2-6. In Section 3, Appendix B (Volume V), the angle _ is derived for the

three types of measurements in figure 2-6. In addition, the H-matrix {which

is the matrix of partial derivatures with respect to the state variables) is

generated for optical angle measurements, direct range measurements and

direct range-rate measurements. The results pertaining to the optical measure-

ments are summarized here. Assume a star direction defined by S = ai + bj

+ ck and a vehicle position R = Xi_+ Y_ + Zk as shown in figure 2-7_ -- --

(O) STAR-CENTER OF PLANET .(b) STAR--NEAR HORIZON
OR LANDMARK

STAR

VEHICLE PLANET

•N. STAR

VEHICLE

PLANET

(C) STAR -- FAR HORIZON (tl) SUBTENDED ANGLE

STAR

VIEHICLE PLANET VEHICLE PLANET

17SOC-VB-5

Figure 2-6. Types of Optical Measurements

In figure 2-7, it can be seen that measurement of the star angle to the near

horizon is given by:

_h = _ " 0 (2-56)
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UNIT VECTOR
I N STAR

DIRECTION

s : =±+ hi+ c=_

z (_) x (!)

(o) VECTOR DIAGRAM OF ANGULAR MEASUREMENTS

VEHICLE

(X,Y,Z)

(b) MEASUREMENT GEOMETRY IN PLANE OF MEASURED ANGLE

1750C- VB- 6

Figure 2-7. Optical Measurements Results
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and the angle to the far horizon is:

_f = _' + 0 (2-57)

where _ is the angle from the center of the planet to the star direction and

0 is the half-subtense angle. In Appendix B of Volume V it is shown that these

angles are:

-I
= cos (d)

{_ aX + bY + cZwhere d
k !R

and 9 = sin'l(R)

where r is the planet radius.

and R = JX 2 + y2 + Z 2

For each type of angle measurement,

(2-58)

(2-59)

the H-ma-

trix (which is the linearized relationship between angle measurement deviations

and trajectory deviations) is given by

O_o O_o 8_ o ]H = @X @Y OZ 0 0 0 (2-60)

where _o represents one of the four angle measurements described.

The partials which make up the H-matrix for each measurement type are

listed in Section 3, Appendix B of Volume V.

In the computer program used in this study, it was assumed that all measure-

ments were made between some star direction and the planet center. This was

done to avoid having to analyze the differences between measurements a and b

in figure 2-7. These differences are expected to have only a slight effect on

system performance for two reasons:

a. The magnitude of the angular difference between a star/planet-center

measurement (_), and a star/near-horizon measurement (_h) is small once

the vehicle is an appreciable distance from the planet. A plot of this angular

difference as a function of time from launch on the 72. Z-hour trajectory is

given in figure 2-8.

b. The plane of the measured angle is identical for a particular star,

=Sa_e-= of which of the three measurements is *-o_ ...... _ Thus +_=_o

will be little difference between measurements in reduction of uncertanties in

this plane.

For these reasons, it was expected that choice of planet center, horizon or

landmarks as a reference point for measurements will have little effect on the

results of the present study, which are intended to be applicable to all these
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Figure 2-8. Angle Difference Between Horizon

and Earth- Center Measurements

measurements. The primary difference between the measurements is evidently

one of mechanization and the range at which the measurement is taken; i.e. ,

landmark-star measurements might be used at close ranges and horizon/star

measurements at long ranges.

In the computer program, the variance, Q, of the measurement errors

is given by:

Q =J2 + (k/R)Z (z-61)

z R)Zwhere a is the variance of instrument errors and (k/ is the variance of

range-dependent errors caused by uncertainties in defining the planet reference

point. This latter term is primarily to account for the random errors which

may occur in attempting to define the earth or moon horizon. In the present

program there is no provision for systematic errors such as might exist in

deter_nining the location of a landmark on the moon. However, the assumed

(k/R)_error is large enough to account for the effects of such a systematic

error even through the mathematical model employed is not exact.
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Figure 2-9 shows the geometry used in deriving the {k/R) 2 term. The

angular error A_ caused by an error k in the planet radius is given as:

,._ k .._ k
A_ - - (2-62)s R

If k is the rms value of the radius error, the variance of the angle measure-

ments is (k/R)2

_k

$

1750C- v8- 8

I

I

I
I

I

I

I

I
I

I

Figure 2-9. Geometry of Reference Point Errors

2.4 RESULTS

This subsection describes the outputs of the midcourse guidance study, in-

cluding both general conclusions and specific numerical results.

2.4. I General Discussion of Guidance Schedulin_

Before going into specific numerical results from the computer program,

some of the pertinent factors affecting the choice and scheduling of midcourse

operations will be discussed. These principles, although simple enough in

themselves have evidently not appeared in the literature before and have often

been ignored in past investigations.

To specify guidance requirements, a schedule of guidance operations

(observations and velocity corrections) must be assumed since it is obvious

that the more measurements which can be made, the more precisely the

trajectory can be determined. However, it is clear that there must be some

"cost" attached to each optical measurement, since this measurement may

involve vehicle orientation, operator participation, computer operation, and

reliability factors. Also, it is obvious that the miss distance can be reduced

by postponing velocity corrections but that this delay will in turn require

2-35



larger corrections. Thus, it can be seen that guidance system requirements

for midcourse must consist not only of specification of hardware functions

and accuracies, but also of the guidance schedule (at least approximately)

which must be used with a given system. In other words, lack of appreciation

of the guidance scheduling problem could result in overspecifying or under-

specifying system requirements.

Several papers (Ref. 2-2 and 2-8) have been concerned with the scheduling

problem. When this study began the only reference work was that of Battin

(Ref. 2-2), and it will be shown that his methods do not yield optimum results.

Denham (Ref. 2-8) has recently derived a more fundamental {and considerably

more complicated) approach to this problem, but the results are not considered

here. Good results were achieved in this study by choosing guidance schedules

on a cut-and-try procedure; the numerical results of Ref. 2-2 were improved

upon significantly.

2. 4. 1. 1 Effect of Individual Measurements

First, consider the reduction in the trajectory uncertainties which result

from taking optical measurements. From equation 2-28, it can be seen that

the reduction in estimation uncertainty which results from each measurement

is given by P-KHP where P is the uncertainty before the measurement, K is

the weighting vector defined by equation 2-27, and H is the geometry matrix

defined by:

H = [ _ a_ 0 00]_ _ _Z (2-62)

where _ is the angle measured. Since the quantity KHP increases monotonically

with increasing H; i. e. , the amount of reduction in estimation uncertainty de-

pends directly upon H and, therefore, directly upon the partial derivatives

c]_/OX, O_/aY, O_/aZ. Thus, the magnitude of the partial derivative O_/OX

indicates the relative geometric efficiency of the angle measurement in reducing

the uncertainties in the X-direction - which is rather obvious when one con-

siders the geometry of the situation.

Figure 2-10 illustrates the effects on reducing uncertainties of taking dif-

ferent types of measurements. The angles are measured in the XY-plane.

Figure 2-10(a) illustrates the fact that the value of angular measurement

is inversely proportional to range to the planet from which the angle is being

measured. If AX 1 = AX2:

> 1 and - 
X 2 X 1

Figure 2-10(b) shows that the uncertainties are reduced most strongly in a

plane perpendicular to the line of sight. Consider the coordinates X and X'.
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Figure 2-10. Effects on Reducing Uncertainties of Taking Different

Types of Measurements
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For AX : AX':

_x _x'

showing that the indicated measurement is more effective in reducing the un-

certainities in the X-direction than the X'-direction. In fact, since O[/OY = O,

no information about uncertainties in the Y-direction can be obtained with

measurements in which the sightline to the planet is along the Y-axis.

The above two effects strongly influence observation scheduling for lunar

trajectories. Figure 2-11, which is a typical schedule, shows that during the

time period of 34-59 hours, no measurements are taken. If measurements

were taken during this period, they would be relatively ineffective since: the

range to the earth is large, and the sightline to the moon rotates very little

during this period. As a result, the uncertainty along the sightline to the moon

becomes large but cannot be efficiently reduced.

Figure Z-lO(c) illustrates the fact that reduction of the uncertainties in a

given plane is independent of the direction of the star sightline, so long as the

star sightline is in the plane of interest. In the figure it is obvious that

0_i/_X = c)_2/c]X and 0_l/0X' = 0 _z/0X'. This is another significant point in
observation scheduling: If the trajectory plane and the plane of the moon's

orbit are coplanar (and this is a desirable situation for achieving an orbit

about the moon's equator), then the largest trajectory uncertainties will be in

this common plane. Since this is the case, most of the angle measurements

should be made to lie in the plane of the trajectory and it is relatively unim-

portant, for trajectory estimation, exactly where in the plane the star sightline

is. It is this fact which makes trial-and-error guidance scheduling simple,

since choice of stars in some precise "optimum" direction is not required.

Thus, the important constraints on the choice of stars for measurements on

an actual flight would be field of view required and visibility.

In the "optimized" trajectory described later, 39 observations to stars in

the trajectory plane were taken, and 6 observations were taken of star-planet

angles whose plane was perpendicular to the trajectory plane. Taking fewer

or more "perpendicular" measurements degraded the results somewhat.

Since trajectory uncertainties are reduced most sharply in a plane per-

pendicular to the sightline to the planet, it is advantageous to have this sight-

line in as many different directions as possible. This is one reason why, as

the vehicle nears the moon and the sightline direction begins rotating rapidly,

the efficiency of optical measurements is greatly enhanced, as shown by the

sharp difference between r, the miss distance, and _', the estimation error,

in all these results. This implies that measurement accuracy requirements

for navigation in a lunar orbit are much less severe than for the Midcourse
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Phase; in a lunar orbit, landmark and timing uncertainties have a much greater

effect than in midcourse and are the limiting factors.

2. 4. I. Z Sequential Optimization of Operations

The navigation scheduling problem can be stated as follows: Given some

requirements on the target miss and estimation accuracy, determine the

guidance schedule which will achieve these end conditions with the minimum

number of observations and the minimum amount of correction fuel.

An attempt at solution of this problem is outlined in Ref. Z-2. In that

paper, a sequential optimization is used, wherein at various time points

throughout the trajectory, a decision logic is employed to (1) decide whether

to make a correction, an observation, or do nothing at all and (2) in the case

of an observation, take that measurement which will reduce the predicted

target uncertainties by the greatest amount. Although this process is useful

for preliminary analysis, a truly optimum schedule cannot result from this

process because of the sequential nature of the optimization process.

The difficulties involved in sequential scheduling can be appreciated by

considering the following examples:

a. Assume that at some time t k, the decision criterion described above

shows that it is advantageous to make a correction. Although a correction at

t k may be useful, it is not known whether or not it would be even better to

postpone the correction until some later time tk+l, with a possible improve-

ment in expected system performance.

b. Assuming it has been decided that a measurement should be taken,

which measurement shall it be ? A sequential optimization technique based

on reducing the predicted target errors by the maximum amount on each

measurement will reduce the largest error component at the time of meas-

urement. However, as in (a) above it may be better to defer this measure-

ment until some later, more advantageous time.

To illustrate (b) above, consider the group of observations before the first

correction is made on the standard trajectory described in paragraph 2.4. Z.

Application of the sequential decision method would result in the choice of a

"perpendicular" measurement (see paragraph _-. 4. 1. 1) at the second obser-

vation since the first observation will have reduced in-plane uncertainties to

less than out-of-plane uncertainties. However, several computer runs in-

dicated that overall system performance could be improved slightly by post-

poning this measurement and making a temporarily less efficient in-plane

measurement at observation two.
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Although the above mentioned effect was slight, the timing and number of

velocity corrections derived in Ref. 2-2 by use of this decision logic produced

results which could be improved upon. Table Z-5 compares the results of

computer runs done for this study with similar work done in Ref. 2-2.

TABLE 2-5

COMPUTER RUN COMPARISON

Study r(km) v(m/s) _(km) _(m/s) Y-Av(m/s)

62. 56-hour trajectory (Ref. 2-2) 18.0 27.0 1.93 1. 75 34. 6

63. 9-hour trajectory (this study) 17. 6 II. 8 2. 65 I. 61 38. 2

The trajectories used were similar (63. 9 hours to 133-km periselenum

compared with 62. 56 hours to 97.5-km periselenum) and the errors in making

observations and corrections were identical, so that the differences between

the results were almost entirely due to different scheduling and injection con-

ditions. The somewhat higher injection errors assumed on the 63. 9-hour

trajectory resulted in a higher total correction velocity (Y-_v). But the most

striking difference between the results is the much larger velocity deviation

(v) at periselenum on the 62.56-hour trajectory. This was due to the fact

that the 62. 56-hour schedule employed four corrections compared to three

on the 63. 9-hour flight and the fourth correction was made only 45 minutes

before periselenum. The low position estimation error (_) on the 62. 56-hour

trajectory was due to making the final observation only 9 minutes from peri-

selenum compared to 24 minutes on the other trajectory. In summary, the

results obtained using three corrections were equivalent to those obtained using

four, except for the final velocity deviation which was much worse on the four-

correction schedule.

2.4. 2 Development of Standard Guidance Schedule for Analysis

To analyze the effect of system Darameter variations, it was decided to

generate one standard case and then vary the different parameters one at a

time. This standard case consists of a trajectory, a guidance schedule, and

system parameters.

The standard case used in this analysis is not recommended for any par-

ticular mission but rather is intended to be a representative group of numbers

to serve as a starting point for the analysis. The trajectory used is trajectory

I (paragraph Z. 3. 1), a 72. Z-hour in-plane flight to a 200-kmperiselenum. The

guidance schedule is one selected after several cut-and-try attempts at improv-

ing the schedule. Typical system parameters were assumed after study of two

references which analyzed similar systems (Ref. 2-Z and 2-9).
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The system parameters assumed for the standard case are as shown in

table 2- 6.

Most of these assumed parameters come from similar studies of the mid-

course guidance problem in which only one value of each parameter was used.

The initial condition errors were supplied by the Marshall Space Flight Center.

The standard guidance schedule was based on several scheduling runs on

the digital computer program described in paragraph Z.3.3. To develop a

useful standard guidance schedule, an initial schedule was assumed, and

variations in the schedule were tried to optimize the performance. Table 2-7

shows the initial guidance schedules used on the 72. Z-hour trajectory and

also on a trajectory which arrives at a 133-kin periselenum after 6.3. 9 hours.

TABLE Z-6

STANDARD CASE PARAMETERS

Description Standard Value

RMS optical instrument error

RMS errors: earth

moon

RMS correction errors: percentage thrust

cutoff magnitude

thrust direction

RMS initial errors: position

velocity

o = I0 arc-seconds (Ref. Z-Z)

k I = i. 6 km (Ref. Z-Z)

k z = 0.8 km (Ref. 2-2)

ok = i percent (Ref. Z-10)

a = 0. l m/s (Ref. 2-10)
E

a = 0.5 degrees (Ref. Z-10)
Y

r = Z. 76 km (Ref. Z-ll)
O

v = 4. Z4 rn/s (Ref. Z-ll)
O

TABLE Z- 7

INITIAL GUIDANCE SCHEDULES

Basic 7Z. Z-hour trajectory (run 3):

(2. 5 hr - I0.5 hr)

0. 5 hr spacing
a a a a dJ a a a a a a a d Av 1 at

9E -1= 8M ------" 11.0 hours

La La'MJ(ZZ hr - 33 hr) a a a a d a a a a

l-hr spacing r- 10E ;I_ Z

Z_v z
at 34.0 hours

(60 hr - 65 hr)

1-hr spacing

ad

a a ] ,Xv 3

at 66.0 hours

(67 hr - 70 hr)

l-hr spacing

(70.3 hr - 71.8 hr)

0. 3-hr spacing

aaaadaaa_
' 10M periselenum at 7Z. Z hours

(See key on next page)
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TABLE Z-7 (Continued)

Basic 63. 9-hour trajectory (run i0):

(1.5 hr - 9.5 hr)
0.5-hr spacing ___aaa aa d I a a a a a aaa_- &Vl9E -]- 8M = I0 hr

(Z3 hr - 34 hr) l a aa a a dl a a a a a d I
l-hr spacing _-----6E -]- 6M------_ _v Z = 35. 0 hr

(53 hrs. - 60 hrs.)

l-hr spacing

(60.5 hrs - 61.5 hrs.)

0. 5 - hr spacing

_aa a_a a d a a a a dJ
4E 8M 7 _v 3

= 6Z. 0 hr

(6z.6 hrs - 63.5hrs.) ]aa a a]
O. 3 hr spacing _--4M--_ periselenum at 63.9 hours

Key:

a

d

E

M

- observation of angle in trajectory plane

- observation of angle perpendicular to trajectory plane

- observation of angle between earth and star

- observation of angle between moon and star

_v - trajectory thrust correction

In each of these schedules, 45 measurements are made in groups bounded by

three velocity corrections.

Table 2-8 shows the results of computer runs in which some improvement

on these initial schedules is attempted without additional measurements or

corrections. In discussing results from the computer program, the quantities

r, v, _', _, and Y._v are shown for comparison. These quantities are again

defined for convenience:

r = rms position deviation at tA, nominal time of periselenum

v = rms velocity deviation at t A

"_ = rms position estimation error at t A

v = rms velocity estimation error at t A

Y-Av = sum of rms correction velocities during flight

It should also be mentioned here that although r is the rms position deviation

at tA, most of this miss is in the downrange direction and is actually an error

in time of arrival. Thus, the geometric miss is considerably smaller than r.

Typically the periselenum altitude miss is approximately 0. 2r and the cross-

range miss is 0. lr.
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No.

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

Key:

r

TABLE 2-8

RESULTS OF SCHEDULING RUNS

De scription r v

Basic 7Z. Z-hr (table Z-7) 21. 38 II. 71

Znd _v at 37.0 instead of 35.0 20. 66 II.32

Observations at I.5, Z. 0 instead of ZZ, Z3 21. 46 II. 71

3rd Av at 70 instead of 66 16.81

Z3. Z9

IZ. 24

i0 elevation measurements instead of 6 IZ. 71

Znd leg = 8E, 4M instead of 10E, ZM Z3. 87 IZ. 87

Ist leg = IZE, 5M instead of 9E, 8M Zl. 17 II. 58

Basic 63.9 hr (table 2-7) 16. 58 II.34

2nd _v at 37 instead of 35

Znd leg = 8E, 4M instead of 6E, 6M

3rd _v at 63 (43 measurements)

4 _v's (at I0, 35, 60, 63)

9 elevation measurements instead of 5

1st leg = 6E, llM instead of 9E, 8M

1st leg = lZE, 5M; 2d leg = 8E, 4M

16.42 i0.98

16.23 II.01

8. ii 15.42

6.19 6.73

17.18 11.60

16.98 11.75

15. 98 I0.78

r v

2.51 1.57

2.51 1.57

Z. 51 1.57

2.38 1.50

2. 58 I. 60

2.43 1.52

2.51 1.57

2.53 1.53

Z. 54 1.54

Z. 53 1.54

8.11 4.50

4.18 2.43

Z. 56 I.55

2.57 1.56

2.51 1.53

= rms position deviation from nominal at periselenum (in km)

v = rms velocity deviation from nominal at periselenum (in m/sec)

"_ = rms position estimation error at periselenum (in km)

= rms velocity estimation error at periselenum (in m/sec)

_Av = sum of rms velocity corrections (in m/sec)

Runs 3 through 9 in table Z-8 were made using the 7Z. Z-hour schedule,

runs 10 through 18 used the 63. 9-hour trajectory. A summary of results
follows.

7_v

Z0. 4

20. 3

19.7

Z4.4

10. 4

20. 1

19.9

Z5.0

Z4. 8

24. 5

33.5

Z6. 9

Z5. 1

26.6

23.3

Run 3 used the initial guidance schedule shown in table Z-7 and served as a

starting point for the cut-and-try procedure used to generate the standard

schedule for the 72. Z-hour trajectory.

while
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On run 4, the second correction was made at 37 hours instead of 34 hours,

as on the initial schedule. This resulted in a slight improvement in system

performance over run 3.

On run 5, measurements were made at 1. 5 and 2.0 hours instead of 22 and

23 hours. Although the guidance accuracy, r, was slightly degraded, note
that F.Av, the total corrective velocity, was decreased. This is because 19

measurements were made before the first correction, rather than 17, and

less error was made in the first correction, thus requiring a smaller second
correction.

On run 6, the third velocity correction was moved from 66 to 70 hours. As

expected, miss distance was decreased at the cost of a higher fuel requirement.

On run 7, ten angle measurements were made perpendicular to the trajectory

plane rather than six. These less efficient measurements resulted in some

degradation from the results obtained in run 3.

Run 8 had less earth measurements in the second group of observations,

producing a degradation in system performance, while run 9 had more earth

measurements in the first group, producing an improvement.

In summary, the runs on the 72. 2-hour trajectory showed slight changes

as a result of scheduling changes. Run 6, in which the final correct.ion was

made at 70.0 hours, was selected as the standard trajectory for this study,

although runs 4 and 9 indicated that the schedule could still be improved

slightly by making the second correction later and taking more earth measure-

ments in the first group of observations.

Runs 10 through 18 were made on the 63. 9-hour trajectory. The effects of

various schedule changes were similar to results obtained on the 72. Z-hour

trajectory, and the improved schedule selected as the standard 63. 9-hour

schedule was run 18. The improved schedules for both trajectories are shown
in table 2- 9.
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TABLE Z- 9

IMPROVED GUIDANCE SCHEDULES

Improved 7Z. Z-hour trajectory:

(Z. 5 - I0.5 hr)

0. 5-hr spacing L a a a a a a aa d_a a a a a a a d [ Av1 at9E 8M------_ 11. 0 hr

L(ZZ - 33 hr) a a a a a d a a a a

l-hr spacing 10E ._ ZM Av 2 at 34. 0 hr

(60 - 69 hr) I a aaa/ a daaa a I
1-hr spacing _---4E _ 6M----_ Av 3 at 70. 0 hr.

(70.3 - 71. 8 hr) _.d M _O. 3-hr spacing Periselenum at 72. 2 hr

Improved 63. 9-hour trajectory:

(1.5 - 9. 5 hr)

0. 5-hr spacing
L aaaaaaaadaaa_aaaaal Av 1r 12E 5M----_ at I0.0 hr

(23-34hr) L aaa aa daaJ aaa_
l-hr spacing r 8E "I 4M _v2, at 35. 0 hr

60h > 41-hr spacing _----4E 8M at 62. 0 hr

(60. 5-61. 5 hr)

0. 5-hr spacing

(62..6 - 63. 5 hr)

0. 3-hr spacing

Periselenum at 63. 9 hr

Key:

a

d

E

M

- observation of angle in trajectory plane

- observation of angle perpendicular to trajectory plane

- observation of angle between earth and star

- observation of angle between moon and star

AV i - i th velocity correction.

The standard navigation schedule for the 7Z. Z-hour trajectory is illustrated

in figure 2-11. Note that the observations have been grouped toward the end

of the subtrajectories bounded by velocity corrections. In this way, trajectory

information is utilized as soon as possible {by making a velocity correction),

and long periods of time when no observations are made are available to the

crew.

In figure Z-IZ, the step reduction in position uncertainty as a function of

time is shown. Note that over periods when no observations are made, the
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estimation error builds up (e. g. , from 26. 2 km at 11 hours to 68.4 km at

23 hours) but is quickly reduced by the first several measurements in the next

group of observations. Note also that the estimation errors are reduced very

strongly as the vehicle nears the moon. This is because of the decreased

range and rotating sightline (to the moon) which occur as the vehicle nears

periselenum. Figure Z-13 shows the rotation of the sightline to the moon

in the last few hours before periselenum on the 7Z. Z-hour trajectory.

2.4.3 Variation of Onboard Guidance System Parameters

In this paragraph, the parameters of the onboard optical guidance system

model are varied about those standard values given in table Z-6 to determine

performance sensitivity to each of the parameters. The standard 45-measure-

ment, 3-correction guidance schedules developed in the previous paragraph

were used on all the computer runs.
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2. 4. 3 1 Optical Instrument Accuracy

Computer runs were made in which all the standard parameters of table Z-6

were used, except for u, the rms value of the optical instrument accuracy,

which was varied from 5 arc-seconds to 30 arc-seconds. The results are

shown in figure 2-14.

From figure Z-14, it is apparent that r and v, the periselenum deviations

in position and velocity and F.Av, the total correction velocity required, all

increase sharply with increasing instrument errors. However _and_, the

periselenum estimation errors are relatively insensitive. This difference is

due to the fact that the miss quantities, r and v, and the total correction ve-

locity, F_Av, are completely determined by the operations prior to and includ-

ing the third and (final) velocity correction. However, the periselenum esti-

mation errors, _ and _, are primarily determined by the measurements taken

after the final correction. As can be seen in figure Z-13, these measurements

are taken at much shorter ranges and are made with reference to a rotating

sightline. Thus, the measurement accuracies requirements may be greatly

relaxed, and accuracies up to 1 minute of arc are quite sufficient for accurate
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trajectory estimation. Another reason the estimation errors are less sensi-

tive to instrument errors is that during the terminal phase of the mission, the

instrument errors of 5 to 30 arc-seconds are small compared to the landmark

(or lunar reference) errors.

In addition to pointing up the sharp difference in optical accuracy require-

ments for the Midcourse and Orbiting Phases, the results of figure 2-14 in-

dicate that a propellant-vs-accuracy tradeoff is possible if instrument accu-

racies on the order of 10 arc-seconds cannot be achieved. By postponing the

third correction until a half-hour or so before periselenum, the trajectory can

be determined with reasonable accuracy by an optical instrument whose accu-

racy is on the order of 30 arc-seconds. Another way of accomplishing the

same result would be to use four corrections, with one shortly before peri-

selenum (this is the Apollo schedule). In either case, requirements on the

optical sensor accuracy can be relaxed at the expense of extra fuel. This

tradeoff was not examined extensively, but some indication of the possibilities

can be obtained by comparing run 10 and run 15 in table 2-8. Note the sharp

reduction in miss distance for a relatively small fuel increase when a fourth

correction is added to the initial guidance schedule. Note also, that run 14

indicates that merely postponing the third _v is not nearly as effective as add-

ing a fourth Av.

In summary, it can be concluded that the optical instrument accuracy is a

critical system parameter and should be kept to about 10 arc-seconds to

achieve acceptable guidance with near-minimum fuel requirements.

2. 4.3.2 Velocity Correction Accuracy

Table 2-10 lists the results of computer runs in which the quantities a K,

ac, and a_ are varied to determine the effect of velocity correction accu-
racy on guidance system performance. It can be seen from these results that

accuracy in implementing the velocity corrections is not critical to perform-

ance of the type of system considered here. Figure 2-15 shows that even

tripling the standard errors assumed in table 2-6 does not greatly degrade the

periselenum results. Conversely, reducing the errors to zero does not greatly

improve performance. This is because, for the type of system considered

here, the greatest source of error in each velocity correction is the uncer-

tainty in the trajectory estimate rather than the error in making the correc-

tions.

This would not always be the case depending upon the guidance system being

considered. In a ground tracking system, for instance, where the high data

rate and more accurate measurements yield a more precise orbit determina-

tion, the correction errors can be the fundamental limitation on the accuracy

of the guidance scheme.

In runs 131 through 133 {table 2-10), one of the standard correction errors

is doubled, while the other two remain constant. Evidently, variations in

a_, the pointing error, have the greatest effect.
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2. 4. 3. 3 Initial Condition Accuracy

In Ref. 2-9, it was shown that initial errors strongly affect the amount of

correction velocity required but do not greatly influence the miss or estima-

tion errors at periselenum. This conclusion is supported by results of this

study, in which the initial errors of table 2-6 are doubled to determine their
effect. The results are shown in table 2-11:

TABLE 2- 11

EFFECT OF INITIAL ERRORS AT PERISELENUM

Item r(km) v(m/sec) _'(km) "_(m/sec) _-Av(m/s e c)

Standard Errors'," 16.8 12. 1 Z. 38 1. 50 24.3

2 x Standard Errors 18.0 13. 2 Z. 4Z 1. 52 40. 9

':-"r : 2.76 kin, v : 4. 24 m/sec
0 0

Despite doubling the injection errors, the position and velocity deviations,

r and v, are only slightly degraded and the estimation errors are virtually
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identical. The only quantity which is sharply affected is F-_v, the total cor-

rection velocity. This is primarily because of the much larger first correc-

tion which is required because of larger initial errors.

The errors assumed as standard are representative of the predicted per-

formance of the Saturn V launch guidance system after a short parking orbit

(Ref. 2-11). It is also assumed that no trajectory information will be avail-

able between injection and the first optical measurement (i.e., N = P ).
0 0

2. 4. 3.4 Landmark Uncertainty

As shown in subsection 2.3, the variance of the measurement error can be

represented by:

Q =/a2 + (ki/Ri)2

where o is the rms instrument error and k i is the uncertainty of the reference

point on the planet to which the angle is being measured.

The values of k 1 = 1. 6 km (earth) and k 2 = 0.8 km (moon) were used by

Battin (Ref. 2-2) and presumably are the result of Apollo studies (although

this has not been verified). The larger figure for k 1 is evidently due to the
earth's atmosphere.

These errors have little effect at long ranges but, in the terminal phase,

can be significant. Computer runs were made in which k I and k 2 were doubled.
The results are shown in table 2-12.

TABLE Z- IZ

EFFECT OF LANDMARK AND HORIZON

UNCERTAINTIES AT PERISELENUM

Item r(km)iv(m/sec )_(km)

Standard (k I = I. 6 km, k 2 = 0.8km 16.8 12.2 Z. 38

Doubled (k I = 3. 2 kin, k 2 = I. 6kin 18. 8 13.0 3. 68

'v_m/sec, _-Av(m/s e c)

1. 50 24. 4

2. 23 24. 7

Table 2-1Z shows that doubling the landmark and horizon uncertainties only

slightly affects the position and velocity miss and the correction fuel. This is

because these quantities are only affected by operations performed before the

third velocity correction at 70 hours which is at a range of 12, Z61 km from

the moon. At such long ranges, landmark or horizon uncertainties are rela-

tively insignificant when compared to the assumed instrument uncertainty of
I0 seconds of arc.
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After the third correction, as the vehicle approaches the moon, landmark
uncertainties become a more important factor as can be seen by examination
of _ and v for the two cases. However, the results are still reasonable, even
with the doubled errors.

Z. 4. 3. 5 Effect of Measurement Timing Errors

Measurement timing errors were not mechanized in the computer program

used in this study. This is because equations developed in Section 6 of Ap-

pendix B (Volume V), indicated that measurement timing is not a critical

error source. It is shown that on measurements before the third correction,

timing errors of 1 second have negligible effect on results. For the last few

measurements before periselenum 0. 1-second timing accuracy is required.

If only 1-second timing precision is available during this terminal period,

result is to increase r and v in a manner similar to the doubled landmark

errors in table 2-12.

the

Z.4.4 Effect of Nominal Trajectory

Most of the preceding results were generated using a 72.2-hour in-plane

trajectory to a 200-kin periselenum. To determine what effect, if any,

different nominal trajectories would have on guidance system requirements,

three other trajectories were generated. These trajectories include a

63.9-hour in-plane flight to a 133-kin periselenum, a 71.5-hour in-plane

flight to a Z00-km periselenum, and a 7Z. l-hour in-plane flight to a Z00-km

periselenum.

Computer results obtained using these other trajectories are presented

and compared to the 72. Z-hour trajectory (trajectory I). However, the only

conclusion which is drawn is that the effects of nominal trajectory variations

are slight, although the out-of-plane case is evidently slightly more difficult.

The reason more definite conclusions are not drawn is that it is not always

possible to be sure that the differences noted when comparing one trajectory

to another are not due to some other factor (such as scheduling) since the

differences are slight.

Z.4.4. 1 63.9-Hour Trajectory (Trajectory If)

Comparison of the standard cases on the 7Z. Z-hour trajectory (to 200-kin

periselenum) and 63.9-hour trajectory to 133-km periselenum reveals that

guidance performance is better on the faster trajectory. However, this re-

sult is not general and, in fact, was due to the more restrictive assumptions

made on the 72.2--hour schedule. Comparison of the standard schedules for

the two trajectories in table 2-9 shows that the 63.9-hour schedule has several

advantages. These are:
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Final correction (AV3)

Measurements before AV
3

Time between measurement

and AV 3

Second correction (AV2)

63.9-hour

I.9 hours before end-

point

41

72. 2-hour

2.2 hours before end-

point

39

0. 5 hour 1 hour

t = 35 hours t = 34 hours

All the factors listed above tend to make the miss quantities r and v

greater on the 63.9-hour trajectory, In order to make a valid comparison of

results on trajectories having different flight times, an improved schedule

was generated for the 72.2-hour trajectory. This schedule, and the results

obtained with the schedule compared to the standard cases, are shown in

table 2-13.

TABLE 2-13

EFFECT OF FLIGHT TIME ON GUIDANCE PERFORMANCE

r(km)

Optimized schedule (72.2 hours) 14.0

Standard case (72.2 hours) 16.8

Standard case (63.9 hours) 16.0

vCm/sec) "_(km) "_(m/sec)

I0.4 2.36 i. 48

12.2 2. 38 I. 50

I0.8 2.51 I. 53

F-&v(m/sec)

23.5

24.4

23.3

Optimized 72.2- hours Trajectory:

(1.5 - 10.5 hr) /

O. 5 - hr spacing

(27 - 36 hr)

1 - hr spacing

aaaaaaaaaa diaaaaaaaa

liE 7" 8M

Av 1 at 11 hrs.

&v Z at 37 hr

(60 - 68 hr)

1 hr spacing
aaadaaaa I

_'- 8M------_

(68.5 - 69. 5 hr) Av 3 at 70 hr

0. 5-hr spacing

(70.6 - 71.8 hr)

0.4-hr spacing

Periselenum at 72.2 hr ]

A comparison of the results for the "optimized" 72.2-hour schedule and

the 63.9-hour schedule shows that the guidance performance is not quite as

good on the faster flight. This is what would be expected theoretically because:

(1) the moon sweeps out less arc (in an earth-centered system) on the 63. 9-

hour flight, thus providing less sightline rotation during the flight for optical
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measurements; (Z) velocities are higher, causing errors (in a fixed time of

arrival system) to propagate more quickly; and (3) the 133-km periselenum on

the 63.9-hour flight compared to the 200-km periselenum on the 7Z. Z-hour

flight is expected to make guidance slightly more difficult on the shorter flight.

The importance of this last effect is not known exactly, but is probably small.

The conclusion which is drawn from all this is that mission flight time has

only a slight effect on guidance system performance. In other words, mission

flight time might have some small effect on expected errors but not a large

enough effect to justify specifying different sensor requirements for different
mission times.

2.4.4.2 71.5-hour Out-of-Plane Trajectory (Trajectory III)

The 71.5-hour out-of-plane (of the lunar orbit) trajectory was generated

not only for comparison with the standard trajectory I but also to determine

whether or not more angle measurements sould be taken perpendicular to

the trajectory plane for a trajectory which makes an angle (23 degrees in this

case) with the lunar orbit plane. The results of computer runs are shown in
table 2-14.

Table Z-14 shows that addition of extra elevation measurements (i. e. ,

perpendicular to trajectory plane), degrades results somewhat on this trajec-

tory as well as the standard trajectory. Comparison of runs 60 and 6 indicates

that the out-of-plane case requires somewhat better guidance. This is not a

firm conclusion, however. For one thing, the final correction on the 71.5-hour

trajectory is made 2.5 hours before periselenum compared to 2. Z hours before

periselenum on the 7Z. Z-hour trajectory.

R un

6

60

61

62

63

TABLE 2- 14

71.5-HOUR TRAJECTORY WITH _V 3 AT 69.0 HOURS':"':'

De s c ription r v _.Av

Standard 72.2 hour

71.5 hour (6 el msmts*)

71.5 hour (12 el msmts)

71.5 hour (9 el msmts)

71.5 hour (8 el msmts)

16.8

19.9

ZZ.g

20.6

20.0

12.2

12.6

13.5

IZ. 8

12.6

24.4

23.5

23.4

23.4

23.5

':' el msmts are measurements of angles perpendicular to the

trajectory plane.
** Useful data on ? and _ not obtained.
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2.4.4. 3 72. l-Hour Trajectory (Trajectory IV)

A 72. l-hour trajectory to 100-kin periselenum was generated for compari-

son with the 200-km periselenum of the standard case. Actually, however, the

difference between the two cases is not great, since actually periselenum radii

of 1938 and 1838 km are being compared. The results of computer runs showed

little difference between the two cases.

Z.4.5 Other Error Sources

In the computer program used in this study, the only observation errors

considered are those from random instrument errors and landmark uncertain-

ties. These errors are assumed unbiased from one observation to another.

On a real mission, however, at least two other errors sources may be

significant and must at least be accounted for in an analysis, if not on a mission.

these are:

a. Instrument bias errors or other time-correlated measurement errors

b. Uncertainties in the astrodynamic constants

These error sources have been the subject of investigation by G.L. Smith

of Ames Research Center in his recent paper (Ref. 2-7). Although Smith's

work is not perfectly suited to the problem at hand and contains some question-

able points which are discussed in Section 7 of Appendix G, (Volume V), the

theoretical treatment of the topic is excellent and Smith's results are utilized

directly in this study as much as possible.

If it is suspected that some systematic error, such as an uncertainty in a

physical constant, is present, then it may be accounted for in the navigation

equations by use of "augmented" state equations such as equations Z-20 through

2-2Z, which are the optimal estimation equations for a system described by

equations Z-18 and 2-19. But recall that in simplifying equations 2-20

through 2-22 to obtain equations 2-23 through 2-25, it is stated that since no

time-correlated errors are present, the equations relating to the error process

can be dropped. However, for systematic errors, these terms are not dropped

and equations Z-Z0 through Z-Z2 are used. The state vector x':-"now consists

of all the trajectory deviation quantities _X, Ay --- _Z plusal, a 2 ___ an,

where the a's are systematic errors. This process is derived in detail in

Section 7 of Appendix B (Volume V).

Since these systematic errors can be accounted for, the problem is to

determine just how many of these errors are significant enough to be included

in an onboard computer system and what happens if they are not accounted

for. This last problem is discussed by Smith in Ref. g-7 and the results of

his study, where applicable, are presented here.
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Table g-15, from Ref. g-7, lists the estimated uncertainties in each of the

astrodynamic constants according to Ref. Z-1Z. Also listed is the maximum

acceleration which can result from an error of the size listed. It can be seen

J1 arethat the errors caused bythe assumed uncertainties in R , , andWses
negligible and are given no further consideration.

TAB LE Z- 15

ASTRODYNAMIC CONSTANT UNCERTAINTIES

Per centag eConstant

Earth g ravitation

Lunar g ravitation

Sun g ravitation

Earth-moon distance

Earth-sun distance

First harmonic in

Earth' s potential

Symbol

}1 e

_t m

_s

R
em

R
es

J
1

Table Z-15 indicates that

Error Magnitude

±9 (10 9 ) m3/sec z

+3 (10 9 ) m3/sec z

+4 (1016 ) m3/sec Z

+2 km

*4 (104) km

,5 (io "8)

O. OOZ

O.O6

0.03

0.0005

0.03

0.003

Max/, (g's)"

z (io-5)
-4

I0

9 (I0 -I0)

3.7 (I0 -4)

1.9 (I0 -9)

4.5 (I0 "8

:he three constants of interest are _te, _m, and

Rem. It should be pointed out that this error model assumes that all signif-

icant uncertainty in the position of the moon with respect to the earth is along

the earth-moon line. If this is not true, then errors in all three dimensions

must be considered.

Smith makes the conservative assumption that the errors listed in table Z-15

are 1-a values, then compares computer runs in which

a. No astrodynamic errors are present,

b. Astrodynamic errors are present and the augmented state equations

are used to compute them.

Unfortunately, no runs are made in which astrodynamic errors are present

but ignored in the navigation equations.

A direct application of the numerical results of Ref. Z-7 would be unwise here

because of the assumptions made in that study. For one, the trajectory used

in Ref. Z-7 is circumlunar, with a 4766-km periselenum at 79.9 hours, evi-

dently resulting in less severe guidance requirements than the trajectories

used in this study. Also the injection errors are assumed to be only 1 km

in position and 1 m/sec in velocity compared to Z. 76 km and 4. Z4 m/sec

assumed standard in this study. In addition, each observation consisted of

the simultaneous measurement of azimuth, elevation and subtended angle of

the earth or moon. Finally, the work done in Ref. Z-7 evidently assumes

that an earth-centered coordinate system is used throughout the flight. This

assumption makes the error in earth-moon distance (A R ) have a greater
e

effect on periselenum performance than would be the case ln_ a moon-centered
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coordinate system were used near the moon. In Section 8 Appendix B (Volume

5) it is shown that switching to a moon-centered coordinate system will tend to

reduce the effects of initial uncertainties in the moon's distance from the earth.

Despite these difficulties, some results from Ref. i-7 are shown in table

Z-16 for discussion. These results were generated using a 45-measurement,
3-correction schedule.

TABLE Z-16

RESULTS WITHOUT ERRORS COMPARED TO COMPENSATED

ERRORS (REF.

Item r (km)
P

No. Astro. Errors Z. 39

Compensated Astro. Errors 3.92

(rp is periselenum altitude miss.

used in this study).

Z-7)

r(km) v(m/s 7(km)

i0.6 1.73 1.79

13.1 1.96 z.96

_(m/s) EAr(m/s)

0. 170 I0.86

0. 354 I0.96

All other quantities are identical to those

It can be seen that results achieved when ignoring the astrodynamic con-

stants are somewhat optimistic. The question of just how optimistic is not

firmly resolved here, since the conditions assumed by Smith yield periselenum

results (without errors) which are much better than those achieved in this study,

primarily because of the lower injection errors and higher periselenum pas-

sage. Thus, the percentage increase in periselenum errors does not apply

to situations in which the trajectory estimation is less accurate. This is

shown in table Z-17 by the results generated on a ZZ5-measurement schedule.

TABLE Z-17

RESULTS ON ZZ5-MEASUREMENT SCHEDULE (REF. Z-7)

Errors

No. Astro. Errors

e

m

_R
ei-n

A_e , A_. ,m
AR

em

rp(km)

1.67

1.71

Z.40

Z.7Z

3. Z9

r(km)

4.76

4.79

8.96

5. Z3

9. Z9

v(mlsec)

1.17

1.18

1.46

1.19

1.49

"_(km)

0.79

0.82

0.91

1.98

2.11

_(m/sec)

0.077

0.082

0.185

0.083

0.187

7  (m/sec)

9.76

9.81

9.78

9.78

9.78
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In table 2-17, it is seen that although the magnitude of the increase in

uncertainties due to astrodynamic uncertainties is about the same as in table

Z-16, the percentage is greater because of the fine trajectory estimation

achieved on this 2gS-measurement schedule.

Another point brought out in table 2_ 17 is that the uncertainty in }_ , the

lunar gravitational constant, is the chief source of error. ARemhamsome

effect on _and Fin table Z-17, but as previously mentioned, this can be

avoided by switching from an earth-centered to a moon-centered coordinate

system.

Another result from Ref. 2-7 is that the estimates in the astrodynamic

constants can be improved somewhat by employing the augmented navigation

equations. This improvement is relatively small, however, and is evidently

proportional to the effect of the uncertainty on the trajectory. Thus, the

estimate of _m can be significantly improved by a circumlunar flight while

Rein and _e would only be changed slightly. Even _m can not be greatly re-

fined on an outbound flight, so that any real improvement in the astrodynamic

constants must be the result of a previous flight.

In summary, it can be concluded that uncertainties in the knowledge of _e'

_m' and Rein cause measurable errors, with the most significant being A_m, and
that uncertainty in Rein can be partially offset by using lunar coordinates near

the moon. It is further concluded that error analyses in which astrodynamic

constant errors are ignored are somewhat optimistic. Thus, on the curve on

figure 2-14, showing guidance performance as a function of instrument accuracy,
an rms instrument error of 10 arc-seconds would actually achieve results

corresponding to 12-13 arc-seconds on the curve, after the effects of other

error sources are taken into account.

In Ref. 2-7, the effects of a bias error are also considered, and equations

are worked out for statistical analysis of the effect of ignoring bias errors in

the onboard computations. Because of the assumptions made in the analysis,

the results are even less applicable to this study than the work pertaining to

astrodynamic constants. Several points are of interest, however. For one

thing, it turns out that a bias error is approximately equivalent to a random

error

Also,

(or in

in the

of the same magnitude in its effect on guidance system performance.

it appears that one can allow for a bias error in an onboard computer

an analysis} by increasing the estimate of Q, the measurement variance,

navigation equations.

Z. 4.6 Other System Confi6urations

So far, all the results generated have been for the case of an onboard navi-

gation system in which each observation consists of the measurement of the
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space angle between some star direction and a reference point on the earth or
moon. Four other possibilities are considered in this paragraph:

a. Double-angle measurements
b. Passive ranging by disc-measurement,
c. Active ranging by a microwave system
d. Ground tracking systems

Z.4.6. I Double-Angle Measurements

At Ames Research Center, a theodolite device which simultaneously

measures the azimuth and elevation of a planet in an inertial coordinate system

and also the subtended angle of the planet has been investigated. It was found

in Ref. Z-4 that measurement of the subtense angle contributes little infor-

mation and that double-angle measurements {azimuth and elevation) are

nearly as good as triple-angle measurements.

Several computer runs on a double-angle system were made in this present

study to compare the results with those obtained with single-angle {sextant)
measurements. The results are shown in table 2-18.

No.

6

53

54

55

140

TABLE Z- 18

COMPARISON OF SINGLE- AND DOUBLE-ANGLE

MEASUREMENTS AT PERISELENUM

De s c ription

Single angle- 45 msmts

Double angle- 45 msrnts

Double angle- 30 msmts

Double angle- 20 msmts

Double angle- 45 msmts

r(km)

a = 10 sec 16.81

= 10 sec15.38

a = 10 sec 19.6_

= 10 secZ1.8]

a = 20 sec 26.2(

'_ No estimation data on these runs.

v(km) _km)i_(m/sec )

12.2 2.38 1.50

I0.342.05 1.26

12.69 ;:-" ;',-"

14.12 ;',' ,_

17. 82 2.51 I. 55

Z Av(m/s e c)

24. 37

22. 81

24. O0

25.24

28. 14

Four computer runs on the 72. Z-hour trajectory were made in which each

observation consists of an elevation angle measurement and an azimuth angle

measurement. Run 6 was made using the standard conditions {single-angle

measurements). Run 53 in table 2-18 shows that although for an equal number

of observations, the double-angle scheme gives somewhat better results, the

overall system performance is improved only I0 to 20 percent. The reason

for this small improvement, despite the doubled data rate, (90 angles measured

instead of 45) is that most of the extra angles measured (39) are taken perpen-

dicular to the trajectory plane and so are of little value as pointed out in para-

graph 2.4.2.
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Runs 54 and 55 were made to see if using the double-angle measurements

would appreciably lessen the total number of observations required. Run 140

was made to see if use of double-angle measurements can lessen the instrument

accuracy requirements. The results are negative in both cases, since the

results of all three runs are appreciably poorer than run 6.

Since the double-angle measurements give so little improvement over the

single-angle results, their use can not be recommended unless a double-angle

measurement device is as easy to mechanize as a sextant-type device.

Z.4.6.20nboard Ranging Measurements

Investigation of the estimation error volume for both the 63.9- and 72. Z-

hour trajectories reveals that just before the third correction, the error along

the sightline to the moon is large. This is because angular measurements

give no information along the sightline to the observed planet, and the sightlines

to the earth and moon rotate very slowly just prior to the third correction.

Therefore, an onboard ranging device, which measures range along the sight-

line to the center of the planet involved would improve the position estimate

greatly at the time of the third correction and thereby reduce the miss distance.

Another time at which a ranging device might be valuable is in the final hour

before periselenum, as the space vehicle nears the moon. Here, the advantage

is not because of greater efficiency, since optical measurements in this period

are quite valuable in reducing estimation errors. The principal advantage is

one of mechanization, since as pointed out previously, timing and landmark

errors begin to become important in this stage. In addition, the crew of a

manned vehicle is likely to be busy during this period, and there may also be

recognition difficulties in using landmarks very close to the moon.

To determine the guidance system improvement available by taking range

measurements before the final midcourse correction, seven computer runs

were made on the 72.2=hour trajectory. The results of these runs, together

with Runs 6 and 3 which are used as references for comparison, are given in

table 2- 19.

Both groups of runs (with the final correction at 66.0 hours and 70.0 hours)

show striking reductions in the miss distance when five ranging measurements

are added to the angle-measuring schedules. This is true even when the ranging

accuracy is only Z0 kin. A plot of miss distance versus ranging accuracy is

given in figure 2-16 for Av 3 at 70.0 hours.
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TABLE Z- 19

No.

3

40

41

42

134

135

136

46

Key:

REDUCTION IN MISS DISTANCE AT PERISELENUM WITH

RANGING MEASUREMENTS

De s c ription

Av 3 at 66.0 hr

Av 3 at 66. 0 hr plus 5 R

msmts (t=65. 1-65. 5)
AR=10 km

Av 3 at 66.0 hr plus 5 R

msmts(t=65. 1-65. 5)

AR=20 km

Av 3 at 66. 0 hr plus 5R

msmts (t=65. 1-65.5)

AR= 5 km

AV 3 at 70. 0 hr (standard

case)

AV 3 at 70. 0 hr plus 5 R

msmts (t=69. 1-69.5)
AR=10 km

Av 3 at 70. 0 hrs plus 5 R

msmts (t=69. 1-69.5)

AR=20 km

AV 3 at 70. 0 hr plus 5 R

msmts (t=69. 1-69.5)

AR=5 km

Av 3 at 70.0 hr 1 R

msmts at (t=69)

AR = i0 km

r(km)

21.38

I0.29

15.4

6.64

16.81

8.40

12.64

4.85

14.64

v(m/sec
11.7

6.47

8.80

5.02

12.2

9.44

10.68

8.72

11.34

) _(km)

2.51

2.41

2.49

2.24

2.38

2.33

2.36

2.22

2.43

V(m/sec
1.57

1.51

1. 59

1.39

1.50

1.47

1.49

1.39

1.53

R = range measurement

AR = standard deviation of error in range measurement

t = time

_iv(m/sec)

20.45

20.48

24. 37

24. 51

24.45

24. 54

24.4

Five additional measurements are made on each run since it is assumed

that a ranging device requires less preparation time (sighting, etc) than an

optical angle-measuring device. However, the difference in information con-

tent between the two types of measurements is shown by comparison of runs

6 and 46. These runs are identical except that on run 46 the angle measure-

ment at t = 69 hours has been replaced by a ranging measurement of 10-km

accuracy. The result is a reduction in miss distance of 2.2 km.
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18

MISS WITHOUT RANGING

16

RANGE

MSMTS. AT T:69.1-69.5

0 I I I
0 5 I0 15 20

rms ERROR IN RANGE MEASUREMENT 1750C-VA-14
( K ILOMETE RS)

Figure Z-16. Reduction in Miss Distance Obtained by Addition of

Five Ranging Measurements to Optical Angle System

To analyze the effect of adding range measurements after the final velocity,

two additional computer runs were made on the 72. Z-hour trajectory. The

results of these runs together with run 3 are shown in table Z-Z0.

Comparison of these runs shows that ranging with an accuracy of 5 km

produces a small increase in estimation accuracy while 10-kin accuracy helps

very little. These results are not too conclusive, however, since a ranging

device such as a radar has a high data-rate and only three measurements

were added in these runs.
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TABLE Z-ZO

EFFECT AT PERISELENUM OF RANGING MEASUREMENTS,:-"

NEAR PERISELENUM

No. Description

3 Standard trajectory (Av 3

at 66 hour)

137 3 range measurements

near end of trajectory,

AR =5kin

483 range measurements

near end of trajectory,

AR = 10kin

r(km)

21.38

21.38

21.38

v(m/sec)

11.71

II.71

II.71

"_(km)

2.51

2.28

1.53

;:"(Ranges at which measurements are made are 1068 km,

_(mlsec)

1.57

1.43

1.53

l vlm/sec)

20.41

20.41

20.41

645 km and 334 km

2.4.6.3 Onboard Ranging Requirements

There are two obvious methods of determining range to a planet from a

spacecraft with an independent sensor system. One is by measuring the angle

subtended by the planet by optical means. The other is to use an active micro-

wave or laser system to bounce signals off the planet and time their return.

The problems involved in mechanizing either of these two methods are con-

sidered briefly here.

Measuring the subtended angle of a planet is attractive from the standpoint of

power required, since it is a passive method. However, some of the problems

involved are:

a. At long ranges, the subtended angle changes very slowly with in-

creasing range, so that accuracy is poor.

b. At least half (and probably more) of the disc must be illuminated

if optical methods are to be used.

c. At very short ranges, the field of view requirements will be severe.

The geometry of the optical ranging method is illustrated simply in figure
2-17.
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MOON

1750C- VA-15

Figure Z-17. Optical Ranging

By taking the total differential of the range R in equation Z-59 the error

in ranging by use of the half subtense angle @ is determined as:

< ) ( )AR = r cos@ A8 + _ Ar
sing@

for small @, where A8 is the uncertainty in the angular measurement and Ar

is the uncertainty due to horizon irregularities.

Since the two error sources are independent, they may be treated separate-

ly and the root sum square taken to find the average deviation. For a distance

{R) of 16,403 km {the range at 69. 1 hours just prior to the third correction

on the 7g.Z-hour trajectory), e _ 0. 106 radian. Assuming A@ = I0 seconds

of arc and r = 0.8 kin, the standard deviation of the error in optical ranging

at this distance is:

JI )e] __y[_ I -FTZ Z 1738 -5 0.8
aR _ r _ + A (4. 85) (I0 +

o. 1o6Z LO.-q-o-6_.l

o R =J7.932 + 7.532 "= I0.6 km

Thus, it can be seen that optical ranging at this distance requires a measure-

ment accuracy (2A@) on the order of Z0 seconds of arc accuracy.
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Since useful optical ranging may be difficult to achieve because of illumi-
ation conditions, a brief analysis was made of the power and dish-size require-
ments for active microwave ranging from the spacecraft. This analysis is
presented in Section 9 of Appendix B, (Volume V). The results obtained,
using a simple pulse-timing system with a Icr accuracy of 10 kin, are shown in
figure 2-18 which is a plot of the following equation:

I2 (Range ) _ 118 751 db wPower (peak) = 0 lOgl0 Dish Diameter

/ _60

I

_X F-_ J
J

2.0 /_
,2o

//
0.4 f_

0 O. 25(tO 4 ) 0.5 0.75 IO4 I.Z5 1.5 1.75 2(IO 4 ) 2.25 2.5

RANGE, KM 1589A-vs- 63

Figure 2-18. Power Requirements for Ranging Off Lunar Surface

for Various Antenna Sizes

Clearly, the requirements shown in figure Z-18 are not easy to achieve.

Even with a Z-foot antenna, the power requirements for ranging at 16, 000 km

are l kw peak and 70 watts average.

Even these requirements are based on assumptions which may be opti-

mistic. For one thing, the lunar reflection coefficient is frequency dependent,

and the value used (-12 db) is not at all certain, as this coefficient is the

subject of considerable study at present by Evans and Pettengill at MIT.
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Secondly, the results obtained assume that all the transmitted main beam en-

ergy is returned from a target area none of which is more than 10 km further

from the spacecraft than the near point of the moon. This required a beam-

width of 1 degree or less. Wider beamwidths can be used, but then the power

must be increased since some of the energy is returned from regions greater

than 10 km (the required error) away.

Z.4.6.4 Comparison of Onboard and Ground-Tracking Systems

The emphasis in this study was on onboard optical systems. An extensive

analysis of ground-tracking systems was not attempted, due to the complexity

of making such a study and the existence of several fine papers on the topic.

One of these (Ref. 2.-I) is used in this paragraph as a numerical comparison

of onboard and tracking methods.

In Ref. Z-l, a comparison was made between a midcourse guidance sys-

tem using ground tracking measurements for navigation and a system using

both ground tracking and onboard optical data. The results indicate that in

both systems, the trajectory uncertainties are reduced to levels which are

insignificant compared to the errors in mechanizing velocity corrections. This

is directly opposite to the results of this present study, in which the guidance

system performance is sharply dependent upon measurement accuracy, while

correction accuracy was found to have a less important effect. The reason

for this difference is that in the ground-tracking situation, a large number of

accurate measurements are taken; and since this resulting trajectory estima-

tion is very fine, the whole guidance system is limited only by correction

accuracy. Using onboard navigation, the estimate is not nearly so precise,

so that guidance performance varies directly with measurement accuracy.

In Ref. Z-l, results are given which show the comparison in performance

between a system using ground tracking and one using onboard methods. The

results at periselenum are shown below:

Ground-Tracking

Observables: Range and range rate to

3 stations

Measurements : 5 31

Accuracy: _ _ I0-724 meters0.07 - 0.237 m/sec

Injection errors: r = 6 km
O

v = 5 m/sec
o

Onboard

Elevation and azimuth

of moon or earth

45

a_ I0 arc sec

plus range factor

r = 6kin
o

v - 5 m/sec
o
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I
I

I

l
I

I

Correction accuracies:

Periselenum results:

Ground- Tracking Onboard

_k = l percent a k = 1 percent
(_ = I degree cr = l degree

gY = 0.2 m/sec (_Y = 0.2 m/sec
6 6

r = 13.5 km r = 25.9 km

v = 9.8 m/sec v = 17. Z m/sec

= 0.6km _" = 4.6 km

~ / ~ /v -- 0.5 m sec v = 2.7 m sec

_Av = 22.6 m/sec _v : 24.8 m/sec

A comparison of results for the onboard and radar tracking cases shows

that the latter system achieves a much more accurate estimate of uncertain-

ties, a significantly lower miss distance, but only a slight savings in fuel for

the conditions assumed. These results indicate that the estimation accuracy

obtainable by tracking is much better than that achieved by onboard measure-

ments but overall system performance is not much greater due to the limi-

tations imposed by the errors in making Velocity corrections.

It should be pointed out that the results shown for the onboard system are

poorer than those shown in this study, for several reasons:

a. Initial errors are larger in Ref. Z-I, making _.Av requirements

hi ghe r

b. Correction errors are larger, making the deviations (r and v)

larger

c. In Ref. 2-1, the third velocity correction was made earlier, also

making r and v larger.

This last effect is quite important, as it has been found in this present study

that postponement of the third velocity correction to t = 70 hours results in a

significant decrease in miss distance at a small cost in fuel.

More dramatic evidence of the superiority of tracking methods over onboard

methods is given in Ref. Z-1 by a plot of the position estimation error for each

system as a function of time from injection into the lunar trajectory. This plot

_nuw_ th'at Y, "'-- rrns ...... w_th

onboard measurements and is reduced to less than 10 km only near the moon.

However, the radar tracking system keeps _' to 1-Z km throughout the flight.

In appraising the applicability of the results of Ref. Z-I, the conclusion is

that the investigation has been very thorough {including errors in station

location, velocity of light, etc) except in one respect: errors in knowledge of
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the position of the moon with respect to the earth are evidently not considered.
These errors are expected to be of some significance in the comparison of
onboard and tracking methods. As far as the radar error model assumed in
Ref. 2-i is concerned, no statement is given as to the source of the error
model, but the magnitude of the errors considered is in line with other
references and the error model assumed is rather conplex. (bias, randon,
and slowly varying errors) indicating that some care has been taken in de-
fining the model.

The natural conclusion to be drawn from the results in Ref. Z-I is that
while use of radar tracking allows a much more precise trajectory estimate
to be made, with respect to the earth, the midcourse guidance system accuracy
is then limited by the accuracy with which the lunar position is shown and
velocity correction accuracy of the vehicle, so that the improvement over
an onboard system is significant but is considerably less than an order of
magnitude.

The superiority of radar tracking compared to onboard systems for tra-
jectory estimation is due to two factors. These are:

a. Greater accuracy of each individual measurement
b. Higher data rate

The higher data rate possible with radar tracking is the result of requiring
only onboard transponder operation compared to onboard optical methods which
require more precise vehicle orientation and stabilization. A more significant
advantage of radar tracking is the greater accuracy obtainable with state-of-the-

art equipment. As an example, it is expected that radar ranging over cislunar

distance can be done to accuracies on the order of 10 to 100 meters. Consider

the accuracy required in an optical sensor to make this fine a measurement.

At a distance of 100, 000 km, an error of 100 meters implies an angular

accuracy of 0. 2 arc-second, which would be difficult to achieve.

g. 5 CONCLUSIONS

Z. 5. 1 Onboard System Requirements

Primary emphasis in this study is on the use of onboar,l optical methods

for navigation measurements during the Midcourse Phase. Although an exact

list of guidance system requirements cannot be drawn up, since tradeoffs

are available in several areas, the following specifications have been shown

to give reasonable results:
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Instrument accuracy
Field of view

Correction accuracy

Timing accuracy

= 1Z.5 arc-seconds, (rms + bias)

= 65 degrees

= 1 percent rms error in percentage thrust

magnitude

= 0. 1 m/sec rms error in magnitude due to cutoff

errors

= 0. 5 degree rms error in pointing

= 1 second, rms, except for 0. 1 second rms near

periselenum.

The above parameters, when applied to 45-measurement, 3-correction

schedule on a 72. Z-hour trajectory with initial injection uncertainties of Z. 76

km in position and 4. 24 m/sec in velocity, yield the following resuits at

periselenum:

RMS position miss r

RMS velocity miss v

RMS position estimation error

RMS velocity estimation error _"

Total correction velocity _.Av

= Z0 km (altitude component: 4 km)

= 1Z. 3 m/sec

= 2.4 km

= 1.4 m/sec

= Z6. 1 m/sec

For the above figures, an uncertainty of 0. 8 km in defining lunar landmarks

and i. 6 km in defining earth landmarks (or horizon) is assumed.

The results listed above can be degraded by 10 to Z0 percent by the pre-

sent-day uncertainty in tXrn, the lunar gravitational constant. Uncertainties

in the earth's gravitational constant _e and the earth-moon distance Rem

wiI1 have lesser effects and other uncertainties are insignificant. Even the

error in _rn will be insignificant if it is first reduced by tracking lunar

flights.

Of the sensor requirements listed, the instrument accuracy of 1Z. 5 arc-

seconds is most critical to system performance, especialiy the miss (r and v)

and fuel requirements (F.A v). Trajectory estimation in the vicinity of the

moon is possibIe with a less accurate sensor. But the 12.5 arc-second

accuracy requirement can only be relaxed by significantly increasing correc-

tion fuel or taking many more measurements.

The 65-degree field of view is primarily to ensure capability of measuring

to some star in a nearly poiar direction. This requirement can be made iess

stringent, by taking a few extra elevation measurements.

As pointed out previously, variations in the correction errors or injection

conditions listed do not greatIy affect guidance system performance, except

that higher injection errors increase the correction fuel requirement.
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Timing accuracy is important only near the planets when angles are chang-
ing rapidly. One-second timing accuracy is sufficient to achieve the miss
distance and correction fuel listed. If 0. l-second timing accuracy of the last
few measurements cannot be achieved, the result is a slight degradation of
estimation errors at periselenum.

Z. 5. Z Navigation Schedules

In general, most of the measurements should be made to some star in the

trajectory plane and the primary requirements on the choice of star are

visibility and recognizability. In fact, the same star could be used for all

in-plane measurements to a particular planet throughout most of the trajec-

tory. This fact might be utilized in mechanizing an automatic {unmanned)

system.

The schedule of measurements and corrections depends primarily on the

correction velocity fuel allotment for the particular mission since miss

distance can be reduced at the cost of fuel if correction are made later or

an additional correction is added.

Z. 5. 3 Tra)ectory Variations

Variations in the nominal trajectories considered have only slight effects

on the sensor requirements.

Z. 5.4 Ransin _ for Midcourse Guidance

The usefulness of some ranging device capable of operating at g0,000 km

from the moon is established. General requirements for achieving this

capability indicate that optical ranging is more promising since power and

antenna-size requirements for microwave ranging are severe.

Z.5.5 Comparison of Onboard and Ground-Tracking Systems

Results from Ref. Z-I indicate that, at least for lunar midcourse guidance,

ground tracking is quite superior to onboard navigation. This is because of

the much larger data rate and the greater accuracy per measurement. How-

ever, even ground-tracking methods are limited, primarily by the accuracy

with which velocity corrections can be implemented.
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2. 5.6 Unresolved Problem Areas

Assuming that in a manned flight, an onboard navigation system should be

available for redundancy and operation on the far side of the moon, one

problem is just how complex should the navigation computer be. It is

shown that many error sources can be taken into account, but in an

onboard computer this is done at the expense of increasing complexity

and deceasing reliability.

• Another problem is that of determing midcourse guidance criteria, so

that tradeoffs and system optimization can be achieved.

• Further work is also needed in determing whether to use fixed time of

arrival or variable time of arrival guidance logi_c during midcourse.

Another problem is to determine the usefulness of a lunar beacon in

conjunction with a vehicle navigating by onboard or ground-traking
methods.

• Finally, additional work on the effect of the nominal trajectory on

guidance requirements should be done.
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3. LUNAR PARKING AND DESCENT ORBIT PHASE

3. 1 INTRODUCTION

This section describes the simulation of a self-contained onboard navi-

gation system which utilizes Kalman's (Ref. 3-I) minimum variance estimation

scheme in a vehicle orbiting the moon. By accounting for a number of prac-

tical navigation problems, this simulation has made it possible to draw im-

portant conclusions about the system requirements and performance.

The application of recursive minimum variance filter theory to celestial

navigation was pioneered by Dr. Stanley F. Schmidt and his associates (Ref.

3-2 and 3-3) and by Dr. R.H. Battin (Ref. 3-4). Following these and other

related theoretical studies, some of the underlying simplifications common

to early investigations were examined in more detail by Smith and McGee

(Ref. 3-5) and by Gunckel (Ref. 3-6). This section continues the investigation

of the idealizations present in earlier publications in a study which is directed

toward the determination of sensor requirements in the orbiting phase of a

lunar mission.

The following summary of notation is applicable to the lunar parking and

descent orbit phase.

SUMMARY OF NOTATION

English Alphabet

B Astronomical length vector

E Eccentric anomaly beyond periselenum

F Velocity increment vector

G Guidance law matrix

H Row vector of partial derivatives of observables with respect to state

variable s

$_ Submatrix of H

I Identity matrix

K Six-dimensional weighting vector

M Total number of observations on parking orbit

N Covariance matrix of deviations from nominal state

P Covariance matrix of errors in estimated state

Q Variance of measurement errors

R Selenocentric instantaneous vehicle position vector

S Selenocentric unit vector in the direction of a known star
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T Period of parking orbit
U Unit eigenvector corresponding to maximum position uncertainty
V Selenocentric instantaneous vehicle velocity vector
W Direction cosine matrix for final tangential, vertical, and transverse error
X Six-dimensional state vector
y Magnitude of an observable
a Parking orbit radius, semimajor axis (general)
ad Descent orbit semimajor axis
b Length or component of B
c Random error
d Dot product of R and V

m

e d Descent orbit eccentricity

f Deviation from nominal velocity increment vector

i Inclination angle between the earth's equator and the earth-moon plane

q Mean lunar radius

r Magnitude of R

s Component of S-vector

t Time

u Component of U-vector

v Magnitude of V

x Deviation from nominal state vector

y Deviation of observable from reference value

Greek Alphabet

Unit vector normal to R in star-vertical measurement plane

F Covariance matrix of input errors

6 Variation

@)M Displacement of moon beyond vernal equinox

@)S Displacement of sun beyond vernal equinox

A Eigenvalue of position uncertainty covariance matrix

k Selenocentric latitude

Lunar gravitational constant

_E Gravitational constant of the earth

_S Gravitational constant of the sun

v Incremental eccentric anomaly

a Standard deviation

_- Time interval between observations on parking orbit

State transition matrix

%b Selenocentric longitude (counterclockwise with respect to earth sightline

in figure 3- l)

[]T
-1

[]

Super s c ripts

Matrix transpose

Matrix inverse
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I

A

E

F

i,j

L

m

M

n

0

P

1,2,3

4,5,6

q

( )
( ),
('T_)
(/.,)
( )

Subscripts

Pertaining to termination of midcourse

Pertaining to termination of parking orbit

Pertaining to beginning of descent orbit

Vector or matrix componentsl/

Pertaining to termination of descent orbit

Pertaining to the m th observation

Pertaining to the last observation

Star index number

Pertaining to the beginning of parking orbit

Pertaining to the first pass over desired periselenum

x, y, and z cartesian position components respectively

x, y, and z cartesian velocity components respectively

Symbols Above Letters

Predicted value

Actual value

Uncertainty; error in estimated value

Indicated or observed value

Ve cto r

3. g BACKGROUND

Given the task of establishing sensor requirements for space missions,

the study is split into two parts:

• Part I - Problem Definition

• Part II - Analytical Solution

The approach taken in defining the problem is as follows:

• Establishment of Mission Priority from the standpoint of political and

economical considerations, value of mission output, and era of feasibility

• Accumulation of information (physical data, orbital laws, constraints,

analytical techniques, state of the art in all pertinent fields) from available

technical literature and from discussions during visits to NASA centers

• Determination from the results of above two investigations of the con-

ditions under which each mission can be regarded as successful. (This is

facilitated by separating each mission into phases and finding boundaries for

allowable guidance errors in each phase.)

/l__IFor time-varying vectors and matrices, the first subscript (m) denotes the

time.
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• Determination of nominal trajectories for each mission phase from con-

siderations of safety, the nature of the mission itself, anticipated guidance

capability, and fuel economy

• Selection of all guidance and navigation aids {observables, which suggest

corresponding sensors) for possible use in tracking and/or guiding the space

vehicle in flight

• Selection of a method of processing the information obtained from the

navigation aids

• Listing of the various factors {errors, environmental conditions, param-

eter variations) which may affect navigation accuracy and,consequently,

mission success

• Selection of a suitable analytical model of the navigation scheme, where-

by a substantial amount of numerical data can be obtained.

After completion of this procedure, the sensor requirement study for each

mission phase is expressible as a concrete, well-defined numerical problem.

As applied to the Orbiting Phase of the lunar mission, the outcome of the

above approach is the following set of conditions:

• The nominal lunar trajectory consists of a circular parking orbit and,

for the landing vehicle, an elliptical descent arc of 90 degrees eccentric

anomaly (figure 3-1). The landing vehicle begins its descent during the

second revolution in the circular orbit.

• Requirements for guidance accuracy during this phase are defined by

the allowable 3 crerrors at initiation of the landing phase; i.e., 5 kilometers

and Z.5 kilometers tangential and vertical error respectively (Ref. 3-7).

• Deviations of the actual trajectory from the nominal are to be compensated

by correcting the thrust to be applied at initiation of the parking orbit and the

descent arc. A fixed-time-of-arrival (FTOA) end-point guidance scheme is

selected.

• Thrust vector corrections are to be computed from optimally selected

navigation data accumulated by an onboard monitoring system. Kalman's

recursive minimum variance technique (Ref. 3-I) has been selected for opti-

mum data smoothing.
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The observables are chosen in accordance with considerations of accessi-

bility, field of view, power, versatility, and minimum auxiliary data re-

quirements for processing the measured readings. The angle between a known

star and the instantaneous local vertical is suitable for parking orbits of 1/Z

period or greater in duration. The errors affecting this type of measurement

are :

• Local vertical pointing error

• Star tracker error (including uncertainties in selenocentric star co-

ordinates)

• Measurement timing error.

The variances of the first two errors are obviously additive; the measurement

timing error effects are shown in the text to be additive also. Overall measure-

ment error is dominated by the local vertical pointing error, and can be as-

sumed Gaus sian.

In the analysis which follows, factors which can complicate the simulation

are sidestepped whenever it is apparent that the outcome would not depend

upon the analytical model. Applied thrust is treated as a velocity impluse,

and the cartesian components of thrust error are assumed to be independent

normally distributed random variables with zero mean and equal variance.

Components of all simulation input error vectors are assumed to be independ-

ent and Gaussianwith zero mean. Space geometry is idealized wherever

permissible.

Finally, no consideration is given here to measurement bias or astrody-

namical uncertainties, since these items are covered in previously mentioned

references, and the possibility of instrument failure or gross measurement

error is beyond the scope of this analysis.

3. 3 ANALYSIS

The mathematical problem to be solved is derived from the guidelines

established in the preceding sections. A vehicle, using FTOA end-point

guidance, is injected into a parking orbit nominally defined as in figure 3-1.

At regular intervals along the parking orbit, prescribed navigation measure-

ments are taken and incoporated into recursive equations to obtain an updated

trajectory estimate. This operation continues until, after the last measure-

ment, the estimated orbit and the desired future position are used to compute

a guidance command. At the proper time, the vehicle is injected into an
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elliptical descent arc which is aimed toward a preselected periselenum for

landing initiation. A comparison of the final miss, vector and the allowable

error volume is used as a criterion of success.g--/

In a physical system there are errors in every step of the guidance and

navigation procedure. The most obvious error sources which must be ac-

counted for are:

• Deviations from the nominal initial position and velocity

• Uncertainties in the initial position and velocity

• Errors in the applied thrust vector at both injection and descent

• Thrust measurement errors at both injection and descent

• Navigation measurement errors.

There are, however, additional sources of error which are more subtle,

and which depend upon the methods used in processing the navigation data.

Specification of the recursive minimum variance method does not completely

define the data processor to be used for orbital navigation. There are two

further decisions which will influence the complexity of the entire process

to a significant extent:

• It must be determined whether all sensitivity coefficients can be computed

from the same nominal trajectory. If not, the partial derivatives used to cal-

culate the state vector corrections will be computed from the updated trajectory

e stimate.

• If sensitivity coefficients are computed from successive updated orbits,

and updated Keplerian equations are used as a basis for all onboard computa-

tions, the estimated trajectory can be described as a time-varying conic.

Because a patched conic is a valid approximation to a perturbed orbit, and

because the actual observables will contain the effects of orbital perturbations,

it is of interest to investigate the use of two-body orbit equations in the actual

onboard system. This, of course, is extremely desirable from the standpoint

of onboard computer simplicity.

The errors arising from these approximations in the onboard data processor

can be adequately characterized only through simulation of the actual non-

linearities and perturbations which are inherently present. At this point the

gJ The maximum allowable error of 5 km at periselenum, specified in sub-

section 3.2, applied to both the observed and the actual miss distance.

The requirement for observed miss distance can be ignored; however, the

rms observed miss distance is always less than the rms actual miss dis-

tance (equation DIS of Ref. 3).
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intended analytical approach departs from most of the literature referenced
earlier. In addition to the conventional linearized analysis of the type per-
formed in earlier celestial navigation studies, the parking orbit analysis is to
include a simulation of dynamic and geometric nonlinearities. This extension
of the error analysis is made without sacrificing any information obtainable
from the conventional approach; the comI_lete calculation of error statistics is
readily carried through the simulation. 37

In addition to the errors considered up to this point, the lack of complete
information on board must be covered, either by analysis or by reference to
the literature. Items of interest in this category are listed below.

• The initial uncertainty covariance matrix can only be approximated.
• Measurement timing is subject to small errors.
• There are uncertainties in astronomical constants.

• Measurement error statistics may not be accurately known.

Some of these have been covered in recent publications and need not be

analyzed in this study. Lack of precise knowledge of sensor error statistics

is apparently not critical {Ref. 3-6) and the effects of unknown measurement

bias and astrodynamical uncertainties can be counteracted (Ref. 3-5). This

latter reference also contains an investigation of computer truncation errors.

The remainder of the above-mentioned items, however, are included in the

analytical study. In addition, the implications of practical restrictions upon

the available field of observables are included in the analysis to give practical

significance to the final results.

The details of the various steps in the simulation are explained in this

section. Throughout the analysis the concept of a six-dimensional state vector

is used, which can be partitioned into the cartesian position and velocity vectors

x xtm--m -- (3-1)

The deviation of this vector from its instantaneous nominal value can be approx-

imated by the linear equation

x = el:) (tm, t ) x (3-Z)m-I --
m m-i

3/Ref. 3-6 also includes a verification of linearized analysis through actual

simulation. However, a more complete investigation is envisioned here,

through simulation of a navigation scheme which uses Keplerian equations

while the space vehicle is in a perturbed orbit.
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where _is a 6 x 6 state transition matrix with a general term defined by

mij

3X
=A mi (3-3)

dX
m-l, j

It is to be emphasized that in computing these elements and the measure-

ment sensitivities, only the observed past state (denoted by a circumflex

above the symbol) and the predicted future state (denoted by a bar over the

symbol) are available to the simulated onboard computer. These notations

for state variables and related quantities are used in the development which

follows wherever they enhance the description of the simulation.

3. 3. 1 Background Analysis

3. 3. 1. 1 Cartesian Coordinates

In figure 3-2, i is the inclination angle between the earth's equator and the

ecliptic, and the time of the month is denoted by/the angle (GM) in the earth-

moon plane, referenced to the vernal equinox, j/ A similar angle, (eS) (not

shown in the figure), completes the definition of the sun's position. In earth

coordinates, them the position vector of the moon is:

cos _M 1
B = [cos i sin

EM bEM L|sin i sin _M(_M (3-4)

And the position vector of the sun is:

cos _)S ]
--B ES = bEs /cos i sing S (3-5)

[ sin i sin_)s

where bEl M and bES are the corresponding scalar total distances. It is now

convenient to define a right-handed selenocentric coordinate system in which

the x-axis points to the center of the earth and the z-axis is normal to the

earth-moon plane. From the figure it is seen that the transformation from

earth to selenocentric coordinates is given by:

4_./For an actual space flight, the transformations employed here would have

to be corrected to account for displacement of the earth-moon plane from

the ecliptic.
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-cos _M -sin _M 0
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In selenocentric coordinates, the position vector of the earth is:

bEll

bE3]

(3-6)

(3-7)
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as expe
of the s

bsl]
bSZ_

bs3]

cted from the definition of the coordinate system; the position vector

un in selenocentric coordinates is denoted as:

--Es- ---EM
Z X

(3-8)

Table 3-1 gives the declination (dec) and sidereal hour angle (SHA) for the
navigation stars taken from Ref. 3-8. In selenocentric coordinates, then, a

unit vector in the direction of a given star is:

No. Mag
1 Z Z

Z Z 4

3 Z 5

4 Z Z

@ o6

6 g Z

7 3 1

8 2.8

9 1.9

G 1.1

Q 0.3

Q O.Z

13 1.7

14 1. 8

15 1.8

Q O.l-l.Z

-1.6

1.6

TABLE 3- 1

NAVIGATION STARS

SHA Dec SHA

358 N Z9

354 S 43

350 N 56

350 S 18

336 S 57

3Z9 N Z3

316 S 40

315 N 4

310 N 50

Z9Z N 16

Z8Z S 8

Z82 N 46

Z79 N 6

Z79 N Z9

276 S l

Z7Z N 7

Z64 S 53

259 S 17

256 S Z9

ZZ

23

Z4

Z5

@
Z7

Z8

Z9

®
31

3Z

®
34

®
36

®

Mag

0.5

I Z

l 7

Z Z

l 8

Z Z

l 3

Z 0

Z.Z

Z.8

I.i

1.6

1.7

I.Z

1.9

0.9

Z. 3

0. Z

0.1

246

Z44

Z35

ZZ3

ZZ2

ZI9

Z08

195

183

177

174

173

167

159

154

Dec No.

N 5 39

N Z8 40

S 59 41

$43 _)

S 70 43

S 8 44

NI_ 45

N 6Z 46

NI5 47

S 17 48

$63 _

S 57 50

SlllSZ

150 S 60

149 S 36

147 N 19

141 S 61

54

55

®
57

Mag SHA Dec
Z. 9 138 S 16

Z. 2 137 N 74

2. 3 127 N 2-7

I.Z 113 S Z6

I.9 I09 S 69

2.6 103 S 16

I.7 97 S 37

Z.l 97 N 13

Z.4 91 N 51

Z. 0 85 S 34

0. I 81 N 39

Z. I 77 S Z6

0.9 63 N 9

Z. I 54 S 57

I. 3 50 N 45

Z.5 34 N I0

Z. Z Z9 S 47

1.3 16 S 30

Z. 6 14 N 15

3-II



m m

Snl

SnZ

Sn3
m

= I 7r +@) i
L

z x

m u

COS (dec) cos (SHA)

-cos (dec) sin (SHA)

sin (dec)

(3-9)

In this analysis, the instantaneous selenocentric position vector of the

space vehicle consists of the first three components of the state vector:

_R(t)

X
1

= X z

X 3

(3-10)

The instantaneous distances from the vehicle to the earth and to the sun are then:

/(bE 2 - X3 )Z (3-11)bVE --4 1 - X1 )2 + (bEz " X2) + (bE3

and

)Z _ X3 )z (3-1Z)
bvs =J(bsl - X I + (bsz - X2) z + (bs3

respectively; the distance from the center of the moon to the earth is:

boE = bE M (3-13)

and the distance from the center of the moon to the sun is:

bo S =jf(b_,l )z + (bsz) z + (bs3)z (3-14)

For spherical selenocentric coordinates (radius r; latitude _; longitude %b)

the zero latitude locus is defined as the lunar equator and zero longitude

is defined as the intersection of the earth-moon line with the lunar equator.

3.3. i. 2 l=lightpath Geometry

The flightpath sequence is indicated in figure 3-1. The nominal circular

orbit begins with an impulsive tangential injection (at time t A = t o) from the

periselenum point of a midcourse trajectory with the proper final inclination

angle at zero latitude and 180 degrees longitude as shown. To set aside at

least one full revolution for orbit determination, the descent initiation is

assumed to take place on the second passage through point E. The arc (EL)

is an elliptical segment with periselenum at point (L).
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It is seen that the true anomaly(< ECL = < FCL} is greater than 90 de-

grees. The term "90-degree descent" refers to the eccentric anamoly (EF) of

the descent arc. When this is 90 degrees, the periods of the ellipse and the

circular orbit are equal, providing an "automatic rendezvous" feature in the

event that a decision is made not to initiate a landing.

The following parameters, determined from the Problem Definition study,

are sufficient to define the parking and descent orbits completely:

r = r = q + 2 x 105 meters
o p

= ; = 0 degree_b° 180 degrees _o

_p - " = 30 degrees= 45 degrees, kp

E F = -90 degrees; r L = q + Z x 104 meters

A complete geometric analysis appears in Volume V, Appendix C.

3. 3. 1.3 Guidance Law

As explained in Volume V, Appendix C, the nominal injection impulse is

parallel to both the terminal midcourse velocity vector and to the orbital plane.

The nominal impulse magnitude is the difference between the nominal midcourse

periselenum speed (VA) and the circular velocity of the parking orbit.

At the time of midcourse termination, the observed deviation from the

nominal state is to be corrected by the FTOA guidance scheme, derived in

Ref. 3-3 and discussed in Volume V, Appendix A. This compensation is ob-

tained by superposition of a corrective thrust vector upon the nominal injec-

tion impulse. The basic approach is as follows.

The observed deviation from the nominal state vector at the time of injec-

tion into the circular orbit is denoted by x_.A. The indicated state vector cor-

rection is then the product G _A, where G is a fixed time of arrival (FTOA)

guidance law matrix{Ref. 3-3):

G=-F °33 O33]

A 1 I33 j (3-15)

in which 033 and 133 represent the 3 x 3 null and identity matrices respectively,

and the A matrices are taken from the partitioned transition matrix:

to)= (3-16)
3 A4
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The initial postinjection state vector deviation (and therefore the actual

orbit) cannowbe defined as the resultant of the actual preinjection deviation
A

x A from nominal, the indicated correction G xA, and a mechanization error:

^ +
L_ ,j

where Oij is an i x j null matrix and E l is an 3 x i velocity impulse error

vector, representing the applied thrust error.

The observed postinjection state vector deviation,

the onboard xA GXA+IE I [1_1 /

navigation com utations, is simply:

^ ^ °31 o 3
_--0 = + +

_ _ _Ezj

which is used to start

(3-18)

where E 2 represents the error in measuring the applied thrust.

The FTOA end-point guidance technique is also used to compensate for

deviations off nominal at descent initiation with one important modification;

with the initial state deviations and uncertainties and the injection errors

considered in this study, the space vehicle can easily be well over a hundred

kilometers off nominal at time tE, the end of the parking orbit. (Thi_ is

discussed in greater detail in paragraph 3.4.3.) At this distance the linearized

guidance law, used for computation of a correction to the nominal thrust vector,

is not sufficiently, accurate to guide the vehicle within 5 kilometers (3 a) of

nominal periselenum. It is therefore necessary to simulate the onboard fixed

time guidance law by

• Computing the desired descent orbit, which is defined by two position

vectors (i.e., the observed position vector at tE and the nominal periselenum

vector at tL) and the time (tL - tF) between them

• Computing the velocity vector at tF which corresponds to this new orbit

• Subtracting the observed velocity vector at time tE from the desired

velocity vector at tF.

The only complicating factor in this procedure is the computation of an

orbit from two position vectors and the elapsed time. The method used here

involves a solution of five simultaneous equations in which the unknowns cannot

in general be expressed explicity.

Given the observed nosition vector _ , the desired nosition vector R_ ,
--E "- --L

and the elapsed time t, - t E = t, - t,_., ffwo equations with three unknowns

(ad, VL, dF) can be wrl'_tten 5_/: "

5/A derivation of these equations appears in Ref. 3-9.
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r L = ad (I cos VL) + _E cos vL + dFff _ -- sin v L

J ad( t L - tF) : a d (v L - sin VL) + 9E sin v L + d F -_- (l - cos VL) (3-g0)

With d F tentatively set at its value on the nominal orbit, these two equations

can be solved iteratively for a d and v L. The velocity vector V F correspond-

ing to this orbit is then computed and the dot product:

A A

d F = R F • _VF : R E _VF (3-Zl)

is formed, and equations 3-19 and 3-2-0 are again solved for a d and v L.

The procedure is repeated until the computed velocity vector V F converges
to a fixed value.

From the standpoint of guidance accuracy alone, this computation is

entirely adequate 6/ and the number of iterations required for solution is not

prohibitive. The fixed time constraint, however, can be expected to exact an

unnecessary increase in fuel expenditure. Thus the guidance technique used

here, while adequate for a navigation error analysis, is not suitable for use

in the actual onboard system.

3. 3. 1.4 Equations of Motion

For a lunar orbit perturbed by earth and solar gravitation and lunar ob-

lateness, the equations of motion in selenocentric coordinates can be written
as2/

6/In a test run with deviation of 200 kilometers off nominal at time tE, the

vehicle was guided to within 25 meters of nominal periseienum position at

t L, as observed byactual simulation. Furthermore, most of this small

error was attributed to uncertainties at time t E of about 15 meters and
0.01 meter/sec.

_7/ Although these equations are approximate, they are sufficiently accurate

for the purpose of this report. Clearly, discrepancies in perturbative
forces are second order errors.
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d 2 X 1 _ X 1

2
dt

!

d 2 X 2

dt 2

d 2 X 3

dt 2

0. 5955 q 0. 000245466 X2
3 + 2 2

r r r

3 _E _E bEl i
+ 0.0006294 2 - _ X1 bet 3

r bVE bo E

_S (X bs0 _sbsl I- --i--- I " -_" (3- 22)

bVS bos i

_ X2 0. 5955 q 0. 000245466 X2
3 + 2 2

r r r

5 X 3 _E _E bE2 I

+ 0. 0006294 2 3 2 - bEg 3

r bVE bo E i
_S _S bsz

3 (X2 - bs2 ) 3 (3-23)

bVS boE I

I I ,X3 I + 0. 5955 C_ O. 000245466 -
3. 2 2

r r r

3 _.E _E bE3 I

+ 0. 0006294 2 3 X3 - bE3 3

r . bVE bo E i
_S _S bs3

3 (X3 " bs3) 3 (3-24)
bv S bos I

where _t, _S' and _E are the gravitational constants of the moon,

earth respectively and q is the mean lunar radius. sun, and Oi
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The actual orbit is computed from these expressions,
conditions:

"X 1 (0 i Xo1

x 2 (o)

x 3 (o)

(05

x2 (o)

_(3 (o)

= R +
--o x02

x03

I
x04

= V +
--O x05

x06

using the initial

(3-zs)

( 3- 26)

where R o and Vo are the nominal position and velocity vectors respectively

immediately after injection, and the error components are taken from equa-
tion 3- 17.

3. 3. 1.5 Observables

The angle between a known star and the instantaneous local vertical is

illustrated in figure 3-3.

(1 )Y = arc cos --- S • R (3-27)m r --m --m
m

where Smis a unit vector in the direction of the star chosen for observation
on the mthmeasurement. The above expression is rewritten as

S T
r cos Y = - R (3-28)m m --m --vn

and, taking variations in R--m'

6r cos Y - r sinY 6 Y = - S T 6 R (3-Z9)
m m m m m m m

Since

1 R T6 r =- 6 R (3-30)m r --m --m
m

the preceding expression is equivalent to:

.... Rm+Sm

6Y 1 m

m=rm _ ' 6R--m
(3-31)
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Figure 3-3. Angle Between Star and Local Vertical

In figure 3-3, _m

urement (Ref. 3-I0).

in the plane of the meas-is a unit vector normal to R m

It can be seen that:

S - R cos 7r - Y + sin _ y (3-3Z)
--m r --m m m

m

Solving this for _n and combining the result with the preceding equation,

5 Y _ 1 _n 6 R (3-33)
m r --m

m
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The partial derivatives of the observed angle with respect to the state vector

components are written as:

A c}Y r s - (S • R ) Xm)m m mi --n_ --m
- - csc Y

hmj a Xmj m r 3
m

l<j<3

hmj = O, 4 < j < 6 (3-34)

3. 3.2 Error Analysis

An overall picture of the entire simulation program is given in figure 3-4.

The development which follows, augmented by the preceding background

analysis, is intended to pinpoint the approach taken in deriving the numerical

results.

3.3.2. I Simulated Equations of Motion

The expressions used to simulate the onboard navigation computations are

the vector solutions to the two-body problem_ (Ref. 3-9). At time t the
m

predicted position vector components are

X
mj

where

a ( )] Xm-

m-I ^
= I -_-- 1 - cosy

r m
m-I

m-3/Zl sin m)]- v Xm 1,

f;- m -

/
1, j + It -t

m m-1

j+3 (3-35)

j=l, Z, 3

_s/If sensitivity coefficients are computed from successive updated orbits

and updated Keplerian equations are used as a basis for all onboard

computations, the estimated trajectory can be described as a time-varying

conic. Because a patched conic is a valid approximation to a perturbed

orbit, and because the actual observables will contain the effects of orbital

perturbations, it is of interest to investigate the use of two-body orbit

equations in the actual onboard system. This, of course, is extremely

desirable from the standpoint of onboard computer simplicity.
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Figure 3-4. Schematic of Lunar Navigation Simulation
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and the predicted velocity vector components are:

ml--Xmj = _ ^m-I sin v Xm_l, j-3
r r
m m-I

+ - _ I - cos v
m-l,j

r
m

(3-36)

where

j=4, 5, 6

and the incremental eccentric anomaly,

cendental equation:

V
m

is the solution to the trans-

A
r

 <tm-t )=v -sinv+m- sinv.m-1 m m am_ 1 m

m-1 d

m-I ( /
+ I - cos v

m

_/_ am- I

(3-37)

and the quantities:

-_/_m, _ "'__r + +°- -
m m2 m_

^ __J^2 _2 _2v Xm4 + +m m5 m6

_zr
rn

a =
m a ^Z

2_-r v
m m

(3-38)

(3-39)

(3-40)

A A A A ^
d = _ + +
m Xm I m4 Xmg Xm5 Xm3 Xm6

(3-41)

are computed from each set of updated state variables.

used to start these computations are:

"A "-I

X01

A

X0Z

A

X03

A

Xo I

A

= R + Xoz
--0

A

.XO 3J

The initial conditions

(3-4Z)
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^] ^X04 x04

X05 ] = V + ^
, --o x05

,_r J ^l "*06 x06

where the error vector components are taken from equation 3-18.

(3-43)

3. 3. 2. Z State Transition Matrix

All elements ofqb follow from partial differentiation of equations 3-35

and 3-36. Complete expressions appear in Volume V, Appendix C.

3. 3. 2.3 Measurement Sensitivity

In the simulation the predicted position vector Rm is used in equation

3-27 to compute the predicted observable _r m, and both of these quantities

are used in equation 3-34 to compute the measurement sensitivities used on-

board.

vector:

H=

where

It is convenient to arrange these derivatives as the partitioned row

I [3T (3-45)
-- r --rfl

m

so that the error introduced into a measurement by a timing uncertainty can

be written as:

Y = H IX (t + 6t) - X (tm) ] = _ JR__ (tm+ 6t) - R (tm) ] (3-46)
t _ m -- m

For a reasonably small uncertainty in timing:

, 0t(0;Vm)Yt- r
m

When the chosen observable is a straight-ahead star (as is often desirable),

the error reaches a maximum value of:

v

= m 6t (3-48)
Yt r

m
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which, in a lunar circular orbit, is roughly 0.8 milliradian per second of
timing error. 9__/

3. 3. Z.4 Data Processing

The minimum variance recursion equations,
references, are stated here without proof:

contained in the aforementioned

P = ¢ (t t i) (166 - K Hm_l) P cT(t t
I) (3-49)m m' m- --m-I m- 1 m' m-

T H T -I
K = P H (H P + Qm ) (3-50)--m ,m --m --m m --m

In these equations, I66 is the 6 x 6 identity matrix, Pm is the uncertainty

covariance matrix of the state vector, and Qm is the variance of the meas-

urement error (including the effects of timing uncertainty).

Since in the present simulation, the latest state vector estimate is substi-

tuted directly into the nonlinear orbit equations, the updating equation is:

X = X + K (V - Y ) (3-51)
--m --m --m m m

A

where Ym is the observed angle, computed by adding a random error of

variance (Qm) to the true value:

1

Y' = arc cos ( r' S R' ) (3-5Z)
m _ _ rn

m

with R'_m as the solution to the actual equations of motion 3-2Z to 3-24, and

where S/n, again, is defined in figure 3-3.

The initial conditions corresponding to equations 3-49 and 3-50 are:

K = O61; H = O (3-53)--o --o --16

(because no measurement is taken during the injection thrust impulse), and

Po is the combined result of midcourse navigation errors and injection thrust

uncertainties. While the onboarddata processing scheme is devised on the

basis of a known (Po) matrix, the requirement for known initial error statistics

is easily circumvented. Consider a series of navigation computations in which

the initial error covariance matrix is assumed to be diagonal (Ref. 3-II) and

the variance elements are set at the largest values conceivable. The assumed

error statistics are clearly conservative, and, since final uncertainties are

substantially independent of initial uncertainties (Ref. 3-3), the results are

only slightly pessimistic.

9_/ It is of interest to note that this peak error sensitivity is equal to the

angular velocity of the vehicle. The instantaneous time derivative of the

true anomaly would be the peak timing error sensitivity in the most

general case.
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3. 3. Z. 5 Data Conditioning

The definition of the vector _'n (figure 3-3) shows that, given the plane of

a measurement, the measurement sensitivities are independent of the orien-

tation of the star sightline in that plane. The plane itself, however, can be

optimally selected. Battin(Ref. 3-4) has shown that, to minimize the rms

position error after an observation, the direction Of_n should coincide with

the principal eigenvector (Urn) of the position uncertainty covariance matrix.

Applied rigorously to a finite star field, this indicates a selection, to be made

before each measurement, of the star which yields the largest absolute value

of the scalar triple product:

[_Rm X (S_ x Rm) ] (U_m x _Rm) . (S_x _Rm) (3-54)
U =
m m

l_Rm X (S × ._Rm) I - rm IS× _Rml

It immediately follows that the star sightline should be chosen in the plane of

(Urn) and (Rm) and, as expecte, d, radial uncertainties cannot be eliminated by
-- -- e " 10/these angle measurem nts._

In this system when Battin's minimum position error condition is satisfied,

the mean squared position uncertainty is reduced, as a result of measurement,

by an amount approaching the maximum eigenvalue of the position uncertainty

covariance matrix. To show this, equation 3-50 is written in partitioned

form as

p(3) p(4 p(3) T (3-55)
1

where the scalar (g) is defined as:

g = HPH T + Q =___p(1)fl_T + Q (3-56)

and all subscripts have been tentatively omitted for simplicity.

From equation 3-45 it is recognized that when _is the eigenvector cor-

responding to the largest eigenvalue (A) of p(1)

h
+ Q (3-57)

g- Z
r

This problem is not serious in a parking orbit of sufficient duration,

where the nonmeasurable (radial) direction rotates through a wide angle.

It should be noted, however, that an earth-moon transfer trajectory con-

tains a comparatively straight segment of considerable length, so that

additional observables for that phase would be extremely desirable.

3-Z4
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The step reduction in P due to the measurement is"

g [p(3) _T _ p(3) p(4)]

From the upper left submatrixof the above product, the step reduction in

the total mean squared position uncertainty is the trace (see Volume V,
Appendix A) :

tr {1 p(1)_T _ p(1)} 1=--'-_ tr

gr

Since P(1) is symmetric,

1 (p(1) I)2 __)T (p( __)=
A+Qr

(3-58)

p(1) pCl)} (3-s9)

the above expression reduces to:

(3-60)
A

Z
Qr

l+
A

This expression represents the largest step reduction obtainable in mean

squared position uncertainty. In addition to the insight it provides, it is

potentially valuable in predetermining the usefulness of a measurement before

it is actually taken. The utility of this development apparently stops here,
however, for two practical reasons:

It has already been decided that the system must function without com-

plete knowledge of the uncertainty covariance matrix. This precludes
the computation of a true set of eigenvectors.

• The number of stars to be tracked must be held to a minimum.

In view of these requirements, the field of observables was limited to three

stars for most computer runs described here. Selection of stars was

governed by the following considerations:

Between measurements the uncertainty can be expected to grow most
rapidly in the direction of motion. It follows that stars near the orbital

plane should be chosen often.

When a continuously monitored star lies in the orbital plane, the situa-

tion will eventually arise in which the angle to be measured approaches

180 degrees, so that the plane of the measurement and the algebraic
sign of the observed angle deviation are ill-defined.

• No out-of-plane information is available from coplanar star measure-
ments.
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From these conditions it follows that two stars should be chosen as nearly as

possible in the orbital plane and a third should lie near the normal to the

plane. The star near the pole of the orbit should be observed when, and only

when_the acute angle between the local vertical line and the visible in-plane

star becomes less than a prescribed minimum (Ymin) and, since each in-plane

star will be eclipsed for roughly half of the orbit, it is desirable that these

two stars have equal and opposite declination angles and a sidereal hour angle

separation of 180 degrees. Accordingly, stars number Z and number 37

(roughly 6-I/2 degrees and 15 degrees out of the nominal orbital plane, re-

spectively) and number 18 (about 78-I/2 degrees out of the plane) are chosen

from table 3-I as the available stars in the standard case.

Although the practical feasibility of a complete navigation star field can be

questioned, it is of interest to determine the performance obtainable when

several or all of the stars in table 3-I are made available. In conjunction with

this investigation, a modified data conditioning procedure is postulated,

whereby the scalar in equation 3-54 is replaced by:

I(UmX Rm). (S X Rm) [

Selection of the star sightline, S, which maximizes this quantity will provide

a preconditioned measurement, subject to the constraint that stars near the

local vertical are to be avoided, lI__/

One final addition to the navigation procedure is considered. It is of in-

terest to determine the improvement provided by an altimeter, which is made

available whenever the eigenvector,_Um, is within 45 degrees of the local

vertical. The observable in this instance is:

[
Y = ./X Z

X z X z
m ml + mZ + m3 - q

and its sensitivities to position and velocity are respectively:

X

---m-t j=l, z s
hmj - r '

m

h = 0, j = 4, 5, 6
mj

An investigation of this point has been included in the simulation.

(3-61)

(3-6z)

1i.__/In practice it is found that this procedure tends to select stars within 30

degrees of the horizontal. This fulfills the original intention of ignoring

overhead stars and also ensures that the chosen star will not be eclipsed

by the moon at the orbital altitude considered here.
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3. 3. 2.6 Linearized Computation of Error Statistics

In accordance with the previously stated assumptions (subsection 3.2)
equivariant and independent Cartesian components of all input error vectors,
it is clear that the initial covariance matrices can be written in partitioned
form as

for initial state vector deviations from nominal, and

[oPA = (3 -64)

33 F4 ]

for initial state vector uncertainties, where:

g

Fi = a.1 I33 (3-65)

and (el), (_2), (e3), (e4) represent rms initial position deviation, velocity

deviation, position uncertainty, and velocity uncertainty per axis respectively.

Convariance matrices for both deviations and uncertainties undergo linear

transformations with time and step transformations with the application of a

velocity impulse, and the uncertainty covariance matrix experiences a step

reduction with each measurement. This step reduction and the extrapolation

of uncertainty with time are both illustrated in equation 3-49. Extrapolation

of the state vector deviation convariance matrix is treated in the same man-

ner; i.e. , premultiplication by the state transition matrix and postmultiplica-

tion by its transpose. The step increase in the uncertainty covariance matrix

with a velocity impulse is expressed as:

33 F8 J

where (06) and (a8) represent the rms integrated thrust measurement errors

per axis for injection and descent respectively (i.e., in each of three mutually

perpendicular directions}. Voiume V shows that the step change in the

state vector deviation covariance matrix resulting from a velocity impulse is

expressed by:
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No = {GA + 166) {NA - PA ) (GA + 166) + PA +

and

(3-68)

033 033]
NF = (GE + 166) (NE - PE ) (GE + 166 )T + PE + (3-69)

LO33 F 7 J

where G A is computed from _ (tE, to) as explained in paragraph 3. 3. I. 3,

G E is computed in a similar manner from d9 (tL, tF), and (a5) and ((Y7) are

the rms applied velocity impulse errors per axis at injection and descent

re spectively.

Coordinate rotations of final error statistics are performed by means of

the rotation matrix:

1__
v L XL4

1

w-

1

1 1

v L XL5 v L XL6

1 1

XLI r L XLZ rL XL3

1 (j VL 1 (K V L
_r L v L (I--VL R L) r L v L ---- R L) r L v L RL)

(3-70)

where the I, J, and K in the scalar triple product expressions represent unit

vectors in the x, y, and z directions respectively. Any 3 x 3 deviation or

uncertainty covariance submatrix can be transformed into tangential, vertical,

and transverse errors through premultiplication by W and postmultiplication

by its transpose.

3.4 RESULTS

The flight path shown in figure 3-1 was simulated under various combina-

tions of navigation computation procedures, available observables, input

errors, and measurement schedules, in order to determine the navigation

system requirements for the allowable periselenum miss distance specified

in subsection 3.2. This subsection contains a detailed description of the

simulated conditions and a presentation of quantitative results, with subsequent

interpretative discussion.
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3.4. 1 Discussion of Digital Simulation

The combined orbital flight simulation and linearized analysis described in

figure 3-4 has been implemented through double-precision digital computation.

The program is arranged so that one member of the ensemble is carried

through the simulation concurrently with the linearized statistical computations.

The primary outcome of this program consists of the deviations and the un-

certainties at all labeled points of figure 3-1 at all measurement times as

computed by both simulation and by linearized analysis. Also, to provide

further insight into the minimum variance scheme, the following information
was read out at each measurement time:

• All six components of the instantaneous state vector in the nominal,

actual, predicted, and observed simulated orbits

All six components of state vector deviations, uncertainties before and

after measurement, and magnitudes of position and velocity uncertain-

ties, as computed by actual flight simulation

The square root of each diagonal term in the uncertainty error covari-

ance matrix, immediately before and immediately after measurement,

and the total rms position and velocity uncertainty, as determined by

linearized analysis

The three eigenvalues and direction cosines for the three eigenvectors

of the premeasurement position uncertainty covariance matrix, used
to select the next observation

• The selected observable (star number), the nominal, actual, and observed

measurement value, and the random measurement error

• All six components of the weighting vector used to update the estimated
state

• Partial derivatives of the observable with respect to each state vector

component, as computed from the nominal, actual, and observed orbits

_ --_*_"*_ -_+o--_ oV na,,_ga*_,- system performance _r_:

• The final errors, as determined from the associated covariance matrices

• The extent to which the simulation agrees with the linearized computa-
tions
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Throughout this subsection, the results of the covariance matrix analysis

are stated as rms errors. It is understood that the rms component of error

in a given direction is the square root of the corresponding diagonal element

of the covariance matrix, and the rms total error is the square root of the

trace of the associated error covariance matrix. Agreement between the sim-

ulation results and the linearized analysis will be understood to mean that the

error as observed by simulation was within the rms level in the majority of

cases.

3.4.2 Numerical Results

To achieve the study objectives with a reasonable number of computer runs,

an ordered sequence had to be planned whereby specific conclusions could be

drawn quickly. This was possible because a number of the decisions which

had to be made are not greatly influenced by exact position of earth, moon, and

sun, the selenocentric longitude of the landing site, etc. A standard set of

conditions was therefore adopted as a basis of comparison for the first series

of runs (Series A). This standard consists of a single Monte Carlo trial,

simulated concurrently with the linearized covariance matrix computation, for
lZ/

a vehicle making three revolutions in a lunar parking orbit.-- The conditions

which characterize the standard run are summarized in table 3-2. Standard

units are meters and seconds.

3-30
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descent guidance of the landing vehicle. Of greater interest here is the

accuracy of the celestial navigation scheme over extended periods of time.
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TABLE 3- 2

STANDARD RUN CONDITIONS

= 4. 8982 x 106 i = 30 deg

@M = 30 deg @S = 60 deg

= 0 deg 4o = 180 deg k = 30 deg
o p

r = r = q + 200,000 r L = q + 20,000o p

E F = - 90 deg vA

RMS measurement error

Appendix C.

q = 1, 738, 070

_p = -45 deg

T = 300 Y
rain

= 25 deg

= 2400 (See Volume V, Appendix C)

• All sensitivity coefficients are

tory estimate.

• No orbital perturbations are assumed present.

• Available observables are limited to stars number 2,
table 3- 1.

(a ) = 1 milliradian (no bias).
m

computed from the latest updated trajec-

32, and 18, from

See Volume V,

RMS error

Appendix C):

Position deviation 10,000

Position uncertainty 1000

Velocity deviation 10

Velocity uncertainty 1

Applied injection thrust 5

Measured injection thrust 0.05

in each component of initial state vector. (See Volume V,

NOTE: Standard units are

meters and seconds.

The earliest efforts in evaluating the navigation scheme were directed

toward the specification of onboard computation procedures. With the

above-mentioned inputs the standard run (Case 1) was made, and the total po-

sition uncertainty (including both the square roots of the traces of the position

uncertainty covariance matrices before and after each measurement and the

error as determined from the Monte Carlo simulation trail) were plotted at

each measurement time. For the second run (Case 2) the program was

modified so that the sensitivity coefficients used in processing the measure-

ments were computed from the nominal orbit; the inputs, and even the random

number starters for Monte Carlo simulation, were matched to the first run.

A third run (Case 3) was made, in which the actual trajectory (but not the
nominal or observed trajectory) was computed from the perturbed orbit

equations (3-22 through 3-24), but all conditions were otherwise identical

to those of the first run.

Since the covariance matrix analysis contains the inherent assumption that

no errors are introduced by idealization of onboard computations, the above

three runs do not exhibit any appreciable difference in linearized ensemble

statistics. That is, the linearized statistical results appear satisfactory in

all three cases. As shown by the simulation results, plotted in figure 3-5,
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Figure 3-5. Total Position Uncertainty vs Time,

Cases I, 2, and 3

however, the three conditions are not equivalent. 13/ In particular, the use

of a preselected nominal trajectory suffers from the persistent increase in

the departure from that nominal, due to period variations. Whenever the

vehicle reaches about 100 kilometers off nominal, the measurement partial

derivatives as computed from the nominal orbit were not in agreement with

those of the actual and observed orbits. This causes a divergence between

The simulation results, of course, do not form a smooth curve, since

they do not represent the average of a large number of trials.
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simulated and linearized results, as shown in figure 3-5. The use of two-

body equations in the onboard computer, however, shows considerable promise,
in spite of the presence of orbital perturbations.

The first run of this series was then repeated with various modifications

for comparison of performance provided by different sets of observables.

Four basic variations in the field of observables were investigated:

Stars number 2 and 32 of table 3-1 were replaced by the pair (numbers 10

and 42), which are 33 and 25-1/2 degrees out of the nominal orbital plane

respectively. Star number 18, near the pole of the orbit, was retained.
(Case 4)

The 20 first-magnitude stars, shown circled in table 3-1, were all made

available, and the modified star selection technique described in paragraph

3.3.2.5 was used. {Case 5)

All 57 navigation stars were used with the above-mentioned selection
technique. (Case 6)

An altimeter with an rms error (including terrain uncertainties) of 1

kilometer was added to the run with 57 stars, and the corresponding data-

conditioning technique described in paragraph 3.3.2.5 was used. {Case 7)

The results of Case 4 are shown in figure 3-6. It is seen that with only

three stars available the ultimate effect of selecting stars which are farther

removed from the orbital plane is a degradation in performance. 14/

Case 4 does show a temporary advantage over Case 1 because, with the

farther-removed stars, the star sightline is never within 25 degrees of

the local vertical line. This allows more in-plane information to be

accumulated at the beginning of Case 4, while Case 1 is observing the less

informative pole star. It must also be acknowledged that the two stars

{numbers 10 and 42) alone are sufficient to provide adequate performance.
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From figure 3-7 it is concluded that a selection of 20 stars offers little

more than a properly chosen set of 3. A similar statement can be made in

regard to the complete selection of 57 navigation stars; the statistical results

of Cases 5 and 6 were essentially the same. The addition of an altimeter, as

shown in figure 3-8, provides a temporary advantage which would be significant
for translunar missions with short coasting segments. 15/

|
w I

!
E
0

OJ

X

.. ,
o qr X _ Ir _/_,_

x x - "-lr'_ x" x xx

X v X

X X

X X X

X X

x

i I i I I I I I i l

Figure 3-7. Total Position Uncertainty vs Time,
Cases 5 and 6

The next computer run (Case 8) was made to determine the effects of very
large displacments from the computational reference. The standard conditions

with all sensitivity _^^tc-_,__v=_,,_ ...... computed from the observed trajectory were

The altitude measurements were not needed after the early portion of the

trajectory. This seems to indicate that a more realistic initial uncer-

tainty covariance matrix would have eliminated the transient rise in

initial position uncertainty without the use of altitude information. Never-

theless, the utility of additional observables will remain significant in

some applications.
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Figure 3-8. Total Position Uncertainty vs Time, Case 7

simulated with the rms initial position uncertainty changed to i00 km in each

coordinate. The extent of agreement between the simulation and the linearized

analysis, shown in figure 3-9,__16/ is an indication of the wide range of toler-

able initial error. It is the safety of the vehicle, and not some limit of mathe-

matical convergence, which determines the allowable translunar midcourse

terminal errors.

The above run was then repeated with Ymin set to zero (Case 9), effectively

removing the pole star and permitting measurement of the inplane star as the

angle approaches 180 degrees. As shown in figure 3-I0, 14/ the simulation

results are near the 3-a level at several points. This confirms the suggestion

made earlier (in the analysis of data conditioning) that overhead stars should

not be used for navigation.

16/ The ordinates for the first two measurements, for both simulation and

linearized results, exceed I00 km in Case 8 and Case 9.
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Case 8

It is appropriate to mention at this point that all data shown here were

obtained with the same random number starter and that subsequent simulations

with other random numbers exhibited a behavior consistent with the original
conclusions.

For the next series of runs (Series B) the single parking orbit revolution

and descent arc of figure 3-1 were simulated to determine the required

measurement accuracy. The standard conditions and inputs were used through-
out, except for the time interval (T) between measurements and the measure-

ment accuracy. Fifteen runs were made, including all combinations of angle

measurement error (a m) and (T) given below.

: 0.5, 1.0. 1.5, 2.0, 3.0 milliradians
m

T : 1_0, 180, Z40 seconds

The descent thrust measurement error was assumed equal to the thrust

measurement error at injection. For applied thrust at descent,, however, the
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Figure 3-i0. Total Position Uncertainty vs Time, Case 9

error was assumed to be 0. I meter per second in each axis. 17/ The results

of this simulation series are summarized in the following paragraphs.

The extra velocity impulse needed for FTOA guidance {typically a few

hundred meters per second) is excessive; a variable time guidance law will

undoubtedly take preference.

It should be noted that this stringent engine tolerance is not a system re-

quirement but an assumed value, used to render the thrust error small in

comparison with navigation error effects. The FTOA guidance law, an

unnecessary restriction in itself, results in a high sensitivity of final miss

distance to applied thrust errors.
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The rms miss distance at the time of reference periselenum is v_ry nearly
a linear function of the product (cr v/_), as shown in figure 3-11.18/ This is

• . . m
to be expected, since the deviation from the desired final position is (nearly)

a linear function of the state uncertainty prior to the guidance command. This

uncertainty in turn is proportional to the rms measurement error divided by
the square root of the number of observations.
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Figure 3-11. Final Miss Distance as a Function of

Instrument Error and Measurement Frequency

As shown in table 3,3, the tangential, vertical, and transverse components

of final miss distance are not equally sensitive to the parameter (a m_t'-).
Particularly at values near the maximum allowable miss distance, the tangen-
tial error predominates.

1__8/ It should be noted that, due to descent thrust errors, the extrapolated

curve would not pass through the origin.
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TABLE 3-3

RMS MISS DISTANCE COMPONENTS AT PERISELENUM {METERS) - SERIES B

_'r (sec)

0.5

1.0

1.5

2.0

3.0

120 180 240

2 3 4

866 (T)
34O iV)
230 (Tr)

1527

49O

381

2110

642

514

2645

789

623

(T)
iV)
(Tr)

iT)

iv)
iTr)

(T)

(v)
(Tr)

3631(T)

1073(V)

,.778(Tr)

1 054 iT)

378 iv)
265 ITr)

1827

563

444

2486

740

592

3084

9O6

705

iT)

iv)
(Tr)

iT)

iv)
(Tr)

(T)

iv)
(Tr)

4187(T )

tzzoiv)
848_Tr)

1152 (T)

401 (V)

297 {Tr)

2001

614

497

2741

820

651

3431

1020

761

(T)

(v)
(Tr)

(T)

(v)
(Tr)

(T)

(v)
iTr)

4746 iT)

1414 iV)

891 _Tr)

Legend: Tangential iT), Vertical iV), Transverse (Tr)

In view of the maximum allowable 3-G tangential miss distance of 5 kilo-

meters, the combination of a Z-minute interval and about 1-1/4 milliradians

rms error can be cited as safe specifications for the lunar navigation phase

with the 3-star configuration of observables.

In seeking a set of conditions under which this last requirement can be

relaxed, the entire run sequence was repeated {Series C), using all 20 first-

magnitude stars, conditioned as Case 6 of Series A. As shown in figure 3-11,

however, the improvement is appreciable but not profound. Furthermore,

a comparison of tables 3-3 and 3-4 shows that by selecting measurements to

minimize the dominant error, the transverse errors are somewhat increased.

The case a m = 3 mr; v = 120 sec from Series C was then repeated with

the initial rms velocity uncertainty reduced by a factor of 10. Again, the

effect was an appreciable (500-meter) but not drastic reduction in rms
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TABLE 3-4

RMS MISS DISTANCE COMPONENTS AT PERISELENUM (METERS) - SERIES C

sec)

_m (rails)_in)

0.5

1.0

1.5

2.0

3.0

Legend:

IgO 180 240

Z 3 4

717 (T)
314 (v)
308 (Tr)

1Z73 (T)

433 (V)

543 (Tr)

1739 (T)
548 (V)
753 (Tr)

2174 (T)

664 (V)

918 (Tr)

3054(T)

906 (V)

1020{Tr)

Tangential (T), Vertical (V),

859 (T)

341 (V)

366 (Tr)

1533 (T)

495 (V)

647 (Tr)

2093 (T)

643 (V)

874 (Tr)

2631 (T)
793 (V)

997 (Tr)

3728 (T)

llO9(v)
1041 {Tr)

Transverse {Tr)

982 (T)

367 (V)

410 (Tr)

1695

538

716

2293

702

944

2893

874

1024

(T)

(v)
(Tr)

(T)

(v)
(Tr)

(T)

(v)
(Tr)

4063(T)

1218(V)

1050(Tr)

terminal miss distance . --19/ Finally,/ a random number starter was found for

which the displacement from nominal position at descent initiation time was

relatively small, and the last simulation was repeated. The effect was a re-

duction of another 1100 meters from the rms miss distance, which brought

the final figure (1750 meters rms) quite close to the originally specified

allowable limit (5 km at 3-a). At the same time, the rms position and velocity

uncertainty at descent initiation were virtually unchanged.

With FTOA guidance for a 1/2-hour descent arc then, the sensitivity of

the linearized final miss vector statistics to the parking orbit navigation errors

(which is related to the slope in figure 3-i i) is somewhat dependent upon the

19___/That is, the rms miss distance was reduced from about 3350 meters to 2850

meters. The smaller initial velocity uncertainty is more in line with results

of the midcourse analysis referenced earlier (Ref. 3-3), but the periselenum

of that trajectory is an order of magnitude beyond the orbital altitude under

consideration here. At any rate, the low sensitivity of final errors to initial

uncertainties indicates that reduction of midcourse navigation errors would

be an inefficient means of improving the ultimate performance.
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particular combination of initial errors occurring at injection. The reason
for this dependence is clarified upon considering the wide range of position
displacements possible at descent initiation. For some of the larger values
encountered (in the vicinity of 250 kilometers), the position deviation to be
compensated by guidance adjustments changes the total path length by a
considerable percentage. Clearly, these variations in arc length, with fixed
time at the end points, must change the average orbital velocity; the energy of
the trajectory, in turn, influences the sensitivity of final errors to initial errors.

3.4. 3 Discussion

Most of the results in the preceding paragraphs lend themselves to brief

interpretation accompanying the data presentation and, therefore, have already

been fully explained. There are, however, a few items for which a thorough

explanation requires some reference to various parts of the analysis. First,

in regard to navigation, it is inferred from equation 3-60 that a point of

diminishing returns is reached when the quantity (QrZ/A) approaches unity.

For a radial distance (r) of about 2,000, 000 meters and an rms measurement

errorjrQ-of one milliradian, this indicates a position uncertainty level of

2 kilometers. The results of this analysis concur. Z0/

In regard to guidance, the overall shortcomings of the FTOA scheme are

clarified with the aid of an example. For the midcourse termination errors

and injection thrust errors considered in this study, a change of 15 kilometers

in the parking orbit semimajor axis is quite within the realm of possibility.

The sensitivity of the orbital period T to variations in the semimajor axis is

easily found by differentiation of Kepler's third law to be approximately 1.5

minutes per 15 kilometers in the lunar parking orbit. Over a duration of about

1-3/8 orbits (the approximate duration of the parking orbit phase), the vehicle

position can "slip" to a location which it should have passed 2 full minutes

ago. With a circular velocity of about 1600 meters/second then, the miss

distance (i. e. , the known deviation) at the time of parking orbit termination is

Z00 kilometers. The implications of this amount of miss distance, while not

insurmountable, can only be described as undesirable.

zo/ Figure 3-9 shows that the rms position uncertainty decreases slowly below

2 kilometers, whereas the large initial errors were quickly eliminated.

It should be noted that an immediate reduction to 2 kilometers rms error

at the beginning of figure 3-9 is inhibited by three factors:

Initial velocity uncertainties produce position uncertainties which

grow with time.

Characterization of an orbit requires six parameters and, therefore,

at least six scalar measurements.

Some of the earlier observations are pole star measurements.
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Since the deviation from nominal position is an appreciable percentage of

the nominal orbit radius, the sensitivity coefficients computed from the

nominal orbit (except those near the time of parking orbit initiation) will

be inaccurate. This will affect both the measurement partial derivatives

and the state transition matrix. It follows that the accuracy of a guidance

law, linearized with respect to the nominal orbit, will be degraded.

For a fixed time of arrival at the terminal point of the descent arc, the

eccentric anomaly of the descent arc will deviate appreciably from the in-

tended 90 degrees. It was mentioned in Section 5 of Volume II that the

90-degree arc provides maximum fuel efficiency for out-of-plane velocity

corrections necessitated by transverse errors.

With a fixed time of arrival (FTOA) guidance law, point (L) of figure 3-1

will not longer be the periselenum of the descent arc. An appreciable

vertical velocity component will therefore exist at the time of reference

periselenum. This is undesirable, since the desired velocity vector at this

point is horizontal, for tangential transfer into the powered landing phase.

The above-mentioned degradation in guidance computations was circum-

vented by means of iterative velocity correction computations, as described

in paragraph 3.3. 1.3. The mere fact that this procedure is necessary,
however, indicates the presence of linearization errors. Indeed, the state-

ment in the last paragraph of paragraph 3.4.2, to the effect that linearized

miss vector statistics vary with initial condition errors really means that the

range of linearity has been exceeded. This point can be illustrated mathe-

matically with the aid of equation D-22 of reference 3-3.

With FTOA guidance between the points (tF) and (tL), characterized by a
state transition matrix

A1 A_I(tL' tF) = A 3 A (3-71)

the component of the mis_lv/ector statistics at (tL) due to state vector errors
at (tF) can be written as __

L2J
(3-72)

2_.2.1/In Ref. 3-3 this is presented as the final position prediction error.

It can be shown, however, that this is equivalent to the position com-

ponent of the time-extrapolated state vector deviation statistics, as

determined by equation 3-69 with no thrust errors present.
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It is important to note that the above expression is independent of the actual

state vector deviation statistics N F at descent initiation. When the actual
position22/ varies over a wide range, however, the state transition matrix

itself will reflect these variations. For a given uncertainty covariance matrix

PF at descent initiation, then, the final miss vector is a function of the path
subsequently followed.

The above situation hinders the specification of one particular standard for

the navigation measurement accuracy and observation frequency requirements.

Fortunately, however, for the variations observed here (up to about 250 kilo-

meters} in descent initiation position, the final miss distance varies by no more

than a factor .of 2. A reasonable concluding assertion is that the guidance re-

quirements can be realized by a state of the art horizon scanner {i to g

milliradians rms local vertical error} at an interval of 1 to g minutes between

measurements, with the understanding that a suitable guidance law must be

derived for use in conjunction with the navigation system prescribed here.

3. 5 DISCUSSION OF ONBOARD COMPUTATION REQUIREMENTS

A question frequently arises in regard to the necessary complexity of an

onboard computer capable of performing the minimum variance calculations.

Actually the outlook is reasonably satisfying; there are several aspects of the

envisioned navigation system which suggest simplicity.

The entire system is Markovian in nature; i.e., when a given state is

reached, the path taken prior to that state is completely immaterial. There-

fore, the use of recursive relationships permits the removal of all data

accumulated prior to the most recent estimate. Storage requirements for the

onboard computer will be reasonably low in this area.

Most matrix manipulations required of the system considered here are of

the most elementary form (e.g., multiplication, addition}. No inversion

operations are required for any matrices of higher than third order.

It was found that with a sufficiently long parking orbit duration, only a

few readily accessible observables are needed for navigation. It is possible

to choose these observables so that lunar rotation does not affect the measure-

ments, and no large array of stored observable data is required.

zZ/ Actual position deviations are emphasized in this discussion, since the

position vector at descent initiation time constrains the descent flight

path. In contrast, deviations from the desired velocity can be removed

by the guidance law.
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It has been found permissible to ignore small perturbations in the onboard

navigation computations, provided that a new orbit and all necessary sensitivity

coefficients be computed after each measurement. Elimination of small

perturbative forces in the onboard computation is a significant saving in

complexity. Repetitive computation of the trajectory and all sensitivity co-

efficients will not be particularly difficult; it involves only the repeated use

of recursive equations and various partial derivative relations, which can be

programmed as special-purpose subroutines. These routines would probably

be needed even if the nominal trajectory were used as the standard because

of the possibility of missing a preplanned measurement or because a complete

array of precomputed coefficients would require excessive storage.

With guidance computations temporarily set aside, the only iterative

calculation needed onboard is the solution of a single transcendental equation

relating the incremental eccentric anomaly to time. Due to low eccentricities

which will be encountered in practice, this equation will converge quite

rapidly.

It is believed that a guidance technique will be established which will allow

both savings in fuel and a reduction in complexity of the onboard computation.

The practice of varying the descent initiation time to compensate for parking

orbit terminal miss distance may provide a significant improvement.

The only factor encountered thus far which tends to complicate the cal-

culations is the need for a word length exceeding that of the standard single

precision IBM 7094. An attempt to use single precision in the covariance

matrix transformations (which are definitely required in the onboard computer)

failed to yield the required accuracy. The use of an equivalent double pre-

cision word length, however, will not materially complicate the logic to be

used in the special purpose computing routines.

Onboard computations required for lunar orbit navigation will now be

discussed. The guidance computations are not included but, as mentioned

previously, it is expected that the scheme which is finally chosen will not

expand the requirements to a great extent.

To begin with the onboard computer description, it will be noted that all

necessary calculations can be performed with the following common routines:

• Only the simplest standard logic; e.g., the Kronecker =^'+ ..... +_-o=

equivalent to the Fortran IF and DO statements

• The arithmetical operations of addition, subtraction, multiplication,

division, and square root
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• The trigonometric sine, cosine, and inverse cosine functions

• Any iterative technique capable of solving a single rapidly converging

transcendental equation with one unknown

The storage requirements will be lenient, since the necessary stored

information consists only of:

• Coordinates of selected observable stars in the celestial sphere

• Special-purpose subroutine instructions which are various combinations

of the standard operations listed above

Transformation of star coordinates is accomplished by the type of computa-

tions indicated in paragraph 3. 3. 1. 1. The fact that some of the angles are

time-varying presents no problem; each variable angle is calculated for the

anticipated time of measurement before the transformation matrix elements

are computed.

Since the onboard navigation procedure is recursive, the operation can be

defined in terms of a single trip around the loop. Any number of loop ex-

cursions can be specified without complicating the physical system require-

ments. The computation is assumed to begin some time between the (m-l) th
^

and the mth measurements at which time the estimated state X m 1 uncer-

tainty covariance matrix Pro-l, measurement sensitivity __Hre_l, weighting

vector K m 1, and rms measurement error are stored in the onboard computer.

The loop computations are performed in the following order:

The position and velocity vector magnitudes, the dot product, and the

observed semimajor axis are computed fromXm_l, by the method

exemplified in equations 3-38 to 3-41.

• Given the time t m - tin_l, the incremental eccentric anomaly v m is

computed iteratively from an equation of the type 3-37.

• The predicted position vector R is computed from an equation of the
--m

type 3-35. The magnitude of the vector is then determined.

The predicted velocity vector Vm

type 3- 36.

is computed from an equation of the

• The state transition matrix _ (tin, t m_l) can now be computed. The

routine is fairly brief, equivalent to about one full page of printed

Fortran. (See paragraph 3. 3. Z.2.)
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• The updated uncertainty covariance matrix is determined as in
equation 3-49.

• Given the next observable star, the predicted observable value is com-
puted as illustrated by equation 3-27.

• The H elements can now be computed as in equation 3-34.---m

• The weighting vector KK.miScomputed from an equation of the type shown
in equation 3-50.

The difference between the measurement and its predicted value is
multiplied by K and added to the predicted state vector.

_m

The loop is now complete, since all quantities initially stored at time

tm-1 have now been replaced by corresponding values at time tm.

From the above summary it is apparent that, so long as the computations

for state transition matrices, weighting elements, etc, are being performed

onboard, no great sacrifice is involved in using the updated orbit as a reference.

It follows that, while the theory of minimum variance orbital navigation

may seem complex, the mechanization of a working system will not present

any insurmountable problems.

3. 6 CONCLUSIONS

The highlights of the lunar parking and descent orbit analysis are summa-

rized in the following paragraphs.

Provided that the parking orbit has a duration "of 1/2 revolution or greater,

it is permissible to limit the navigation observables to Z or 3 known stars and

the local vertical. A properly chosen set of 3 stars (Z in the orbitalplane and

1 near the pole of the orbit} provides navigation accuracy comparable to that

obtainable with the 57 navigation stars (Ref. 3-8). Acceptable performance

is also obtainable with Z stars, both about 30 degrees out of the orbital

plane.

Overhead stars (i.e., stars near the local vertical line) are not acceptable

ig ti "nay a on al(iS.

The advantage of the star-vertical measurements are continuous acces-

sibility (including the flight over the dark and unknown sides of the moon);

low requirements for accompanying astrophysical data, power consumption,

and field of view; insensitivity to lunar rotation; and ease to both manual and

automatic implementation.
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With direct radial position information (i.e., altitude measurements), the

navigation errors can in some cases be reduced more quickiy. Because of

the prominence of tangential errors, however, no appreciable permanent

improvement is achieved.

The measurement sensitivities and the state transition matrices used in the

minimum variance equations must be computed from the updated trajectory

estimate, rather than from a given nominal orbit.

With repeatedly updated Keplerian equations used for navigation, the ob-

served trajectory takes the form of a time-varying conic. Because this is

a valid representation of a perturbed orbit and because actual navigation

measurements include the effects of orbital perturbations, it is permissible

to use two-body equations for navigation, even in the presence of perturbing

forces.

Complete knowledge of the initial uncertainty covariance matrix is not

necessary; a pessimistic diagonal (Ref. 3-11) initial matrix leads to a con-

servative result. Since final navigation errors are insensitive to initial

navigation errors, (Ref. 3-3) the result is only slightly pessimistic.

Measurement timing uncertainties on the order of tenths of a second have

little effect upon navigation accuracy in the cases under consideration here.

Additional sources of error, not treated in this analysis, have been

covered in other related studies. Lack of precise knowledge of sensor error

statistics is apparently not critical, (Ref. 3-6) and the effects of unknown

measurement bias and astrodynamical uncertainties can be counteracted

(Ref 3-5).

The simulation conducted here is in accordance with the principle that

terminal navigation errors (i.e., state vector uncertainties) are insensitive

to initial errors. The guidance errors (i.e., final miss vector components)

however are somwhat sensitive to initial conditions. The reason is trace-

able to trajectory modifications, necessitated by large displacements from

reference position with fixed time guidance.

The total rms final miss distance is a linear function of the quantity

(a m _'_). The slope of this line, however, is somewhat sensitive to initial

errors, as expIained by the above discussion of the guidance law.

The fixed time guidance law, an unnecessary constraint, also leads to a

high sensitivity of terminal miss distance to thrust errors.
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The fuel consumption accompanying the FTOA guidance scheme is excessive.

This remark refers to the in-plane correction at descent initiation, plus any

extra fuel required because of departures from the optimum (90-degree) arc

for plane corrections, and also to the unwanted vertical velocity component

at the intended powered landing initiation time. Total excess (i. e. , above

nominal) velocity impulse figures are typically on the order of a few hundred

meters per second in the system analyzed here with FTOA guidance.

In view of the above results, it is reasonable to assert that the guidance

technique to be selected for actual orbital flight will be superior to the FTOA

scheme and will complement the minimum variance navigation technique so

that its full potential can be realized. The navigation scheme itself can be

performed adequately with state of the art horizon scanner accuracy and will

not be unduly degraded by nonlinearities, perturbations, imperfections in

navigation computations, a limited field of observables, measurement timing

uncertainties, or incomplete knowledge of parameters required for trajectory

determination. In conclusion, the performance envisioned in the pioneering

studies of minimum variance orbital navigation (Ref. 3-2, 3-3, and 3-4)

appears to be obtainable with a practical onboard system, which lends itself

readily to mechanization.
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4. LUNAR LANDING PHASE

4. 1 INTRODUCTION

This section deals with the descent portion of the Lunar Landing Phase. The
lunar descent trajectory is initiated at periselenum of the lunar descent orbit,

discussed in the preceding section, and terminates prior to final vehicle

touchdown. The goal is to evaluate the effect of navigation and control sensor

errors on the performance of the landing guidance and control system.

Two overall approaches to lunar landing guidance are analyzed. These

two, selected as being representative of the guidance concepts presented in

Volume II, are linear predictive guidance and a form of proportional naviga-

tion. Navigational information is obtained by beacon tracking in both ap-

proaches. In addition doppler navigation is considered for use with the linear

predictive guidance scheme.

The two approaches will be treated as separate problems with discussion

of a comparative nature confined to subsection 4.4 of this report. The analyt-

ical effort associated with each guidance technique will be reported in three

parts: background analysis, error analysis, and results.

Background analysis forms a connecting link between Problem Definition and

Analytical Solution. System techniques are selectedfrom among those available

in the Problem Definition and a specific formulation is developed which is appli-

cable to the Lunar Landing Phase. Among the subjects discussed in this section

of the report are the state variables used and the resulting equations of motion,

the observables selected and the navigation equations, the guidance technique,

the reference trajectory, and the vehicle characteristics. The output of this

section is a completely specified model of the lunar landing navigation, guid-

ance, and control system.

The error analysis portion of the report contains the final formulation of

the system model used for analysis and primarily qualitative discussions of

the analysis techniques used to evaluate the effects of sensor errors. More

quantitative descriptions of the error analyses are presented in the appendixes
in Volume V.

The quantitative results of the error analysis are also presented and dis-

cussed.
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Following the analytical sections outlined above is a comparative discussion
of the two guidance approaches, and a concluding section.

The following is a summary of the notation used in the lunar landing
analyses.

SUMMARY OF NOTATION

F

f

go

h

Isp
R

r C

T

t

V

X

x

Y

Y

(l

8

(r

IT

-I

]

The general control quantity

A deviation of F from the reference value

The acceleration of gravity at the earth's surface, 9. 80665 m/sec z

Altitude above the lunar surface

Fuel specific impulse

Line-of-sight range from the spacecraft to the desired landing site

The mean lunar radius, 1738 kilometers

The magnitude of the vehicle thrust vector

Time, referenced to the time of landing maneuver initiation

The magnitude of the spacecraft velocity vector

The general state variable

A deviation of X from the reference value

The general observable quantity

A deviation of Y from the reference value

The orientation of the spacecraft thrust vector, relative to the velocity

vector

The spacecraft flightpath angle relative to the spacecraft local horizontal

The angular displacement of the spacecraft from the desired landing

site in lunar central coordinates 101Z m3/sec ZThe lunar gravitational constant; 4. 89820 x

Root mean squared value

Line-of-sight angle from the spacecraft to the desired landing site,

referenced to spacecraft local vertical

Line-of-sight angle from the desired landing site to the spacecraft,

referenced to landing site local vertical

Superscripts

Matrix transpose

Matrix inverse
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B

D

f

i,j

Yn

M

n

o

P,q
r

X

Y

Subscripts

Denotes quantities pertaining to a system using beacon tracker observ-
ables

Denotes quantities pertaining to a system using doppler navigation
observables

Denotes final value

Matrix, or vector element indices

Time index

The maximum value of m

Indicates a random error quantity
Denotes initial value

Matrix, or vector indices

Denotes reference value (value on the nominal trajectory)

Denotes a quantity pertaining to the state variable, X

Denotes a quantity pertaining to the observable, Y

()

(°)

"(-)

(---)

LJ

Operators

Derivative with respect to time, dO
dt

Derivative with respect to _, dO
dr

Ensemble average over all possible missions

Symbols above and below cluantities

Estimated value, or value computed on the basis of observed informa-
tion

Estimation error, difference between the actual value and the es_timated
value

A vector (column matrix)

4.2 GENERAL BACKGROUND

The material presented in this subsection serves as general background
for the detailed analysis of both guidance approaches considered for lunar

landing. Included are the following items.

• A description of the overall mission profile and definition of the lunar

descent trajectory

• Discussion of an optimum descent trajectory

• A functional description of the component subsystems of a generalized

navigation, guidance, and control system for lunar landing

• Discussion of the broad analytical assumptions made for the lunar land-

ing analyses
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• Definition of the general sensor error model used

4.2. 1 Mission Profile

The lunar landing phase begins at periselenum of the synchronous descent

orbit defined in Section 3 of this volume. The landing maneuver to be con-

sidered is characterized by continuous, rather than impulsive thrusting. The

latter, although truly optimum from the standpoint of fuel consumption, be-

comes impractical when engine size and acceleration levels are considered.

It is convenient to segment the total landing phase into two subphases, the

descent maneuver and the final touchdown maneuver. The descent maneuver,

or trajectory, commences with engine ignition at periselenum and terminates

with the vehicle at some nominal offset point a short distance above the lunar

surface. At this point, the final touchdown subphase begins. The work des-

cribed in this section is concerned almost exclusively with the descent maneu-

ver. For manned lunar missions, which have been given the highest priority,

final touchdown is considered to be subject to manual guidance and control.

4.3.2 Trajectory Considerations

Trajectory optimization is not within the scope of this effort. However,

there are some trajectory characteristics which are desirable for the descent

maneuver. In particular, economical fuel usage and a near-vertical approach

to the landing site are necessary, the former for obvious reasons and the

latter because of visibility, attitude control, and terrain clearance consider-

ations.

Subsection 1.Z of Appendix D (Volume V) describes the derivation of an

optimum lunar descent trajectory. This trajectory is optimized from a fuel

usage standpoint and ignores the desire for vertical approach. For this rea-

son, this class of trajectories is not selected as nominal for either of the two

lunar landing systems studied. However, the fuel consumption characteris-

tics of this optimized landing maneuver can be used as a basis for evaluating

the fuel economy of the nominal trajectories that are actually used.

The technique used for trajectory optimization is the method of steepest

ascents (Ref. 4-i). The optimization technique applies to constant-thrust

vehicles. No constraints are placed upon the terminal point of the optimized

trajectory. Selection of initial altitude, initial velocity, specific impulse,

and the initial thrust-to-mass ratio uniquely determines the optimum trajec-

tory that will be obtained. The optimization criterion is minimum time,

which is seen to be equivalent to minimum fuel since the thrust level is con-

stant at "a value specified prior to trajectory optimization.
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4.2.3 Functional Description of the Landin_ Guidance System

A generalized system block diagram is shown in figure 4-i. The total

block diagram comprises the overall vehicle control system used during the

landing maneuver. There are four major blocks within the system: Naviga-

tion, Guidance Logic, and Control Subsystems, and the dynamic equations of
motion.

NAVIGATION CONTROL

SENSOR SENSOR

ERRORS ERRORS

OBSERVABLES VEHICLE VECTOR

STATE COMMANDS

CONTROL
SUBSYSTEM

ACTUAL VEHICLE STATE
VEHICLE DYNAMICS

EOUATIONS OF MOTBNS
I ACTUAL THRUST VECTOR

1750C-VB-25

Figure 4-1. Overall Navigation, Guidance, and Control System;

Block Diagram

This study is intended to be as objective an investigation of the effects of

sensor errors as possible. To this end, the discussion of actual system

mechanization is held to a minimum, and the system blocks tend to be defined

in terms of mathematical expressions. For example, the Navigation Subsystem
is defined by the navigation equations which relate the state variables to the

navigation observables. In addition the analytical model of the control sub-

system will be somewhat idealized in portions of the analysis= It is recog-

nized that certain sources of system error are omitted from the idealized

model; however, these error sources are not the subject of study at this time.

Since the idealization reduces dependence on any particular mechanization

without jeopardizing the investigation of sensor errors, it is felt to be justi-

fied by the intent of the study.
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Functionally, the Navigation Subsystem is to acquire and process inlorma-

tion which can be used to estimate the vehicle state. The data acquisition

instruments are the navigation sensors, and the sensed quantities are termed

observables. Since the navigation measurements are subject to error, the

actual inputs to the navigation block are estimated values of the observables.

The estimated state variables obtained at the navigation block output form

the inputs to the Guidance Logic Subsystem. The guidance function is to eval-

uate the estimated state and generate thrust vector commands which will

bring the landing vehicle to the desired terminal state. Two guidance tech-

niques are evaluated in this volume. Detailed descriptions are given in para-

graphs 4.3. i. 3 and 4.3. Z. 3 and the associated appendixes in Volume V.

In practice the control block will include the vehicle attitude control system

as well as the engine control system. The function is to implement the guid-

ance commands. As previously pointed out, idealizations will occasionally

be made with respect to some aspects of the Control Subsystem. Where this

is done, it will be the practice to consider control sensor errors as additional

error sources and evaluate their effects.

Finally, the equations of motion are actually the same for any landing

vehicle. However, since varying observables and state variables are used

in the two guidance approaches, the actual formulation of these equations

used in the error analysis may appear different.

4.2.4 Analytical Assumptions

Four general analytical assumptions apply throughout analysis of the lunar

descent phase.

• The motion of the Vehicle can be adequately described by the dynamics

of a restricted two-body system. (This assumption, which is validated by the

fact that space vehicle mass is negligible compared to the lunar mass, is

commonly used to describe the motion of spacecraft operating in the vicinity

of a massive body.)

• No dynamic perturbations such as those caused by lunar oblateness or

gravitational anomalies are to be considered. (The presence of these dis-

turbances in the analytical model will not alter the influence of sensor errors

except as second order effects and therefore need not be considered.)
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• The moon is considered to be stationary during the performance of the

descent maneuver. (The actual rotational motion of the moon during the time

occupied by landing is not negligible. However, the coordinate system used

for landing navigation is referenced to a fixed point on the lunar surface.

Since this coordinate system moves with the lunar rotation, the relative

motion is zero. For the purposes of this investigation, it is equally valid

to assume that the absolute motion is also zero.)

• The landing trajectory is assumed to be two-dimensional. That is,

the plane formed by the vehicle position vector in lunar central coordinates

and the vehicle velocity vector is assumed to contain the desired landing site.

(In practice, deviations of the target landing site from the plane defined above

are expected to be small.)

It is also appropriate to point out that the following analyses do not assume

a flat moon or a uniform gravitational field. Trajectory determination uses a

spherical moon and a central gravitational field.

4. Z. 5 Definition of Sensor Error Model

The main objective of this study is the evaluation of the effects of naviga-

tion and control sensor errors on the performance of lunar landing navigation

and guidance techniques. It is clear then that the analytical model or charac-

terization of the sensor error constitutes an important input to the analysis.

The following definitions will facilitate discussion.

Y(t): An observable quantity at time t

V(t): The total error in measuring Y(t) at time t

The total measurement error is considered to be the sum of four components,

two bias components and two zero-mean random-noise components as illustrated

in the following expression.

Y(t)

y(t) F_ "Yb + YPb 1-60 + yn(t) + YPn (t) Y(t)lO0

The characteristics of each component are given below.

YPb 100

(4-i)

is a bias error which is constant over the duration of flight

multiplying a scale-factor bias coefficient, vPb/100, by the

value of the observable quantity. The coefffcient P , has the

units of percent and is constant over the landing phYasbe.
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_n(t) is a noise error which is characterized as being a stationary
Gaussian random variable with zero mean value and mean

squared value denoted n a2. The units of _n(t) are the same as

those of Y.

,._Y(t) is a nonstationary random error which is the product of _ p (t)

Y_'n_S)l--_ and Y(t)/lO0. The scale factor coefficient , p (t) is definXednto

be a stationary Gaussian random variable w_t_ zero mean value,

and mean squared value pay.2 The units of ypn{t) are percent.

The bias error components, _ and p , are constant over a given mission
u y

but random over the ensemble of all possible missions. The noise error com-

ponents are random over a given mission as well as over.the ensemble of all

missions. In addition the error components of each observation error are as-

sumed to be independent, and when more than one observable is measured, all

observation errors are independent.

The general error model used throughout the investigation of lunar landing

is thus defined.

4.3 ANALYSIS

4.3. 1 Lunar Landin_ Usin_ Linear Predictive Guidance

Of the two basic error analysis techniques, Monte Carlo simulation and

linearization, the latter was selected for use in the investigation of a landing

concept employing linear predictive guidance. There are two primary reasons

for selecting linearization:

• Linearization is a mathematical technique and tends to deemphasize

mechanization considerations which is in keeping with the intent of the study.

• Linearized analysis produces statistical information directly. Since

sensor errors can only be defined statistically, their effects must also be

de s c ribed statistically.

In addition the linearized analysis is found to be quite flexible in that Naviga-

tion, Guidance Logic, and Control Subsystem parameters can be varied with

little difficulty.

The background analysis sections include discussion of the various compo-

nents of the overall Landing Guidance System. Also included are descriptions

of the linearized models of each major system block which will be used to

make up the overall system analytical model.
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After linearization of the overall system, the resulting system model is

still not amenable to ordinary analytical techniques. The reason is that many

of the subsystems are characterized by time-varying gain parameters. The

approach taken to this problem is quite commonly used in the investigation of

time-varying control systems. Basically the scheme is to quantize time

or subdivide the flight into a sequence of small time intervals. Within each

interval the system is allowed to be both linear and time invariant. All time-

varying parameters are sampled at the beginning of each interval and held at

the sample value until the next sampling time, one quantization interval later.

Then all parameters are updated and sampled again. System characteristics

are updated according to stored data evaluated on the nominal trajectory,

and vehicle state information is updated by using the linearized equations of

motion and vehicle forces commanded at the previous sample time.

The results of the error analysis are matrices of error sensitivity
coefficients which relate the mean squared terminal state errors to the mean

squared values of the sensor errors which caused them.

4.3. 1.1 Background Analysis

a. State Variables, Control Quantities, and the Equations of Motion. -

Since a two-dimensional analysis is being performed, four state variables

are required to specify vehicle position and velocity relative to the landing

site. The four selected are defined below and illustrated in figure 4-Z.

h is the altitude (in meters) of the spacecraft above a reference sphere.

(The radius of the reference sphere is equal to the lunar radius at the

nominal landing site.)

O is the angular displacement (in radians) of the spacecraft from the

desired landing site in lunar central coordinates.

y is the flightpath angle (in radians) relative to the landing vehicle local
horizontal measured in the plane of motion,

V is the magnitude of the velocity vector (in meters per second).

Quantities h and 8 define position, while y and V specify the velocity vector.

The control quantities are those parameters which define the vehicle

thrust vector. Two are sufficient because of the restriction to two dimensions.

The parameters selected are defined below.

T = The magnitude of the thrust vector (in newtons)

a = The thrust vector angle measured as illustrated in figure 4-3 (in radians)
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Figure 4-Z. Landing Phase Geometry
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Often during the course of this analysis it will be convenient to write

equations in matrix form. For this purpose two column matrices or vectors

are defined. X_.is the state vector or a column matrix of state variables,

and_F is the control vector or a column matrix of control quantities. In terms

of the state variables and control parameters previously defined:

h
X I

X 2

X 3

X 4

0

V

(4-z)

= = (4-3)
--- .F Z

The equations of motion describe the motion of the vehicle. Those used in

this analysis are given below and are derived with the aid of figure 4-3, which

is a velocity-acceleration diagram of the lunar landing maneuver.

h = V sin y (4-4)

v cos yr +h
c

V cos _ T sin a _ cos y
Y- r +h mV - 2

c V(r + h)
C

._'r= T cos a _ sin
m 2

(r +h)
C

The dot operator indicates a time derivative. Quantities h, _, y, V, T, a,

and m are all implicit functions of time. Of these, all but m have been pre-

viously defined. Of course m is the mass of the vehicle and is equal to the

initial mass plus the integral of the rate of mass flow.

m--rn
o

tdn
+ --- dt

J ¢t
t

o

The instantaneous rate of mass flow is defined as

dm T
m --

dt I
sp go
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Figure 4-3. Velocity-Acceleration Diagram of Landing Maneuver
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The as yet undefined quantities in this equation and in the equations of motion
are constants which are defined below. The numerical values are those used

for this analysis.

r = lunar radius at the landing site = mean lunar radius = 1. 738 x 106 m
c

2m3 2_t = lunar gravitational constant = 4. 89820 x 101 /sec

2
go = acceleration due to gravity at the earth's surface = 9. 80665 m/sec

I
sp

= fuel specific impulse = 400 sec

The linearized equations of motion are obtained by expanding each equation

in a multidimensional Taylor series about the reference trajectory and dis-

carding all terms higher than first order. In terms of the generalized state

variable X i

The subscript r indicates that the subscripted quantity is to be evaluated on the

nominal or reference trajectory. If the symbols x and f are used to indicate

deviations of X and F from the reference values, the above expression becomes

x .ro*,[ f. (4 -6)
3

When all four components of the state vector are considered, the following
matrix formultaion of the linearized equations of motion results.

w,-,ore[*] _ ,,4x ._m_t,'*xd,,_*nod_,_,:,',__on_,'a,e,_m_n_,,_j.an_'[B]_,
4 x 2 matrix defined by b...

13

'13 Xj j 1, 2, 3,
r

%---LNJ
r

i= 1, 2, 3, 4}
j 1,2

(4-8)

(4-9)
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A second formulation of the equations of motion will also be useful in the

error analysis. These expressions are given below.

Z Z

X1 = _ - V rC°S+ h_ _ Tm sin (y + _) -
c (r +h) 2

C

{4- I0)

V z T cos (y + a)
Xz = _'- sin 2_ + _

(r c ÷ h)Z m (rc + h)

V cos y T sin a _ cos 7
1_3 Y - r +h mV

c V(r + h)
c

= <r=_ Tcosa _ p sin
"'4 m Z

(r +h)
C

These equations are also linearized about the reference trajectory,

in the matrix equation

re suiting

o,

x_ Xll

- - -
(4-11)

follows:

J"r j I, 2, 3,

are partial derivative matrices with elements defined as

(4-1Z)

_Oi_[1OF---_f ;{i = 1, Z, 3, }

" Jr j 1, Z

This second formulation is used to generate the anlaytical models of the

linearized equations of motion to be used in the error analysis.

illustrates these equations in block diagram form.

(4-13)

Figure 4-4
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b. Navigation Subsystem - The observables that can be used for naviga-

tion during the Lunar Landing Phase are specified in Volume II - Problem De-

finition. From this list two combinations of observables providing sufficient

information for landing navigation are selected for investigation. The criterion

for sufficiency is that all state variables be calculable from a single set of

navigation observations.

Prior to discussion of the selected observation schemes, it is of value to

consider the landing mission to see what navigation information is required.

Since there are considered to be four state variables (two-dimensional tra-

jectory), a minimum of four different observations are required to determine

vehicle state. For the landing analysis it is considered that these will be four
simultaneous measurements of different observables. It is conceivable that

fewer observables could be used with multiple observations required for a

single determination of vehicle state. However, this technique, which is

employed successfully for midcourse and orbital navigation, does not appear

to be practical for the relatively brief landing phase.

It is believed that observations sufficient to allow determination of the

vehicle altitude and velocity vector are essential in view of the extreme

consequences likely to be caused by erroneous estimates of these quantities.

Whether or not observations must be made which will allow determination

of the state variable 0 is dependent on the mission requirements. Recall that

0 is the angular displacement of the vehicle from the landing site (lunar

central coordinates). As such, errors in 0 are related to errors in the

horizontal position of the vehicle relative to the landing site. If overall

mission success requires that the landing be made accurately at a specific

point, then determination of 0 from observed data will be required because

this is the only way that unknown initial deviations in 0 can be compensated.

On the other hand, when accurate point landing is not required, and

mission requirements are satisfied by a successful landing anywhere in the

neighborhood of the nominal landing site, observations made solely to deter-

mine the value of 0 will not be required. Examination of the equations of
motion reveals that none contain the state variable 8. Therefore the only

effect of an unknown and uncompensated initial error in 0 will be a horizontal

offset of the terminal state, which has been assumed not to endanger mission

success in this case.
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The two observation schemes selected for analysis are referred to as the
beacon tracker and the doppler navigator• These are defined in paragraphs
4.3. 1. 1.b(1) and 4.3. 1.1.b.(Z} respectively• This material includes dis-
cussion of the information sensing scheme as well as presentation of the
appropriate navigation equations. Direct observations to the lunar surface are
characteristic of both navigation schemes• Inertial navigation was considered
but quickly dropped because of large initial condition uncertainties which would
be expected.

As previously mentioned, the navigation equations are to be given in
succeeding paragraphs. At this time a general column matrix of observables
is defined:

y -

Y1

YZ

whe re N

equal to

which yield the estimated state variables as functions of the observables.

general form they are

A ^ ^ J% A

X.1 = gi (Y"I YZ' Y3' Y4 )

The symbol (^) over a quantity indicates an estimated value.

(4 - 14)

Y
n

is the total number of navigation observables used and will be set

4 for this analysis. The navigation equations are those expressions
In

Also important

will be the linearized navigation equations which are obtained by the same

process described in paragraph 4.3. 1.1.a. In general matrix form these
are

^ ".-.. A ^x= _'Z; Z- - Y (4-15)
-- . -- -- --r

The matrix [G]is composed of partial derivatives evaluated on the reference

trajectory. The general element of [G] is

A

c _X._ (i = I, Z, 3, 4_

giJ= 0Y. j = I, Z, 3,

J r

The resulting block diagram of the linearized navigation system is given in

figure 4-5.
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(1) Beacon Trackin_ Navigation - As the term beacon tracking

inplies, navigation information is obtained by actively tracking a beacon.

For this analysis, the beacon is assumed to be located at the desired landing

site. The observables are line-of-sight range, R, and angle, ¢, as well as
their time derivatives, 1_ and ¢. Observables R and _b are illustrated in

figure 4-Z. The matrix of beacon tracker observables is related to the

general observable matrix as follows:

B

B

¢

¢

YIB

- YZB

Y3B

Y4B

- YB (4-17)

The navigation equations are derived in Subsection Z. 1 of, Appendix D

(Volume V) with the following results:

X I = h = R cos _b+ c - sin

X Z = _ = sin "I sin

^ A ^ 7r _ :n_l [_]X 3 y ¢-_ t

^ ^ . [(_ 2 ^_2] 1/2X 4 = V = ) + (R_)

- r (4-18)
C

(4-19)

Linearization of these na,rigation equations yields the matrix expression:

1 -
^ A

x = GB[ YB
• d

The general element of [GB] is
k J

A

%,
B jB j I, Z,3,4

r

Equations used for these matrix elements are given in Subsection Z. 1 of

Appendix D (Volume V).

(4-z0)

The linearized navigation system model using beacon tracking observa-

tions is obtained by substitution matrix elements YiB and (gij)B for Yi and
(gift respectively in figure 4-5.
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(2) Doppler Navigation - Actually, referring to this navigation

scheme as doppler navigation is only partly true. The complete system studied

makes three kinds of observations, one of which is doppler in nature. The

other two are altitude, h, and line-of-sight angle to the desired landing site,

_. Altitude and angle observations are straightforward; however, the doppler

observations require some further discussion.

In general the doppler measurements will be made by a three-beam doppler

device which will be termed radar for convenience. Parameters pertinent

to this discussion of the doppler technique are illustrated and defined in fig-

ure 4-6. The antenna system assumed for this analysis remains fixed with

respect to the coordinate system x, y, z. This is done by aligning vector

OP along the local vertical which is in the negative z direction. (Errors in

establishing local vertical can be lumped with the other observation errors.)

The vehicle pitch axis x t and the x axis are assumed to be initially coincident.

The analytical restriction to two dimensions means that these axes will re-

main coincident throughout the analysis. In these circumstances it can be

seen that the dot productV • OB will be equal toV • OC.. If the range.rates

along the radar beam axes OA, OB, and__OC are denoted RI., I_Z, and R 3

respectively, the preceding statement implies that I_Z and R 3 are equal. In-

deed,

RI = -Iv. OA_)

and

RZ = R3 = -(V_" OB___)

The two range rates R1 and RZ along with observations of h and _ com-

prise the observables considered in the doppler navigation system. In

matrix form,

Y h
ID]

YZDL Rl

YDm Y3DI

Y4DI R2

The navigation equations are:

^ ^ ^

X I =h=h

-1 [{r + _%)
-- C

=0=2 - r
c

sin

(4-zl)

(4-zz)
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^ ^ -1
X 3 = _ = tan

A ^

X4=V=

i0 ° 1R Z sinA 2 - R1 cos _ sin A 1

- R cos A
R 1 cos A 1 g Z

R 1 (R 1 cosA 1 - RZ c°sAz) + (R Z sinA Z R 1 cos _ sinA 1)Z _

cosA Z RZ sinA z-R1 cos _ sin A 1 + sinA 2 R 1 cosA 1 - RZ cos A z

Linearization of these expressions yields:

x^
where the general element of matrix [GD]

^ i = I, Z, 3,

(gij)D--=I' Y "8 D =1, Z 3
r _ p

is:

(4-z3)

(4-24)

The linearized navigation system model is obtained by substitution of

matrix elements YiD and (gij)D for Yi and (gij) respectively in figure 4-5

c. Linear Predictive Guidance Technique - The discussion presented

in this paragraph is primarily a qualitative description of the guidance tech-

nique. Linear predictive guidance (as described in Ref. 4-Z) was selected

for investigation principally on the basis of its good error-correcting capability

and versatility. I/ This scheme is capable of correcting relatively large

deviations from nominal initial conditions at reasonable fuel expense. In

addition, the guidance technique can be adapted for use in either manned or

unmanned vehicles. For detailed theoretical discussion of the guidance

technique, including derivation of the guidance term matrix

Sll s12 s13 s14]
-- (4-25)

S = LIs21 s s sZ2 23 Z4

see subsection 6. 1 of Appendix A (Volume V).

Basically, the guidance concept can be described as follows.

1. Ref. 4-Z is a report dealing with the capabilities of this guidance technique

prepared by Ames Research Laboratory personnel.
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• Navigation information is used to estimate vehicle state at time t.

(Time is referenced to the time of landing engine ignition.)

t.

• Estimated state variables are compared with the nominal values at time

\

• Differences between estimated and nominal values are inputs to linearized

equations which estimate the terminal deviations that would exist if no devia-

tion from the nominal thrust program is commanded.

• Thrust vector deviations which will reduce certain of the estimated

terminal state errors to zero are computed and are the command inputs to

the control subsystem.

• The process is repeated.

It is not possible to calculate thrust vector commands which will reduce

all four terminal state errors to zero. Four independent control quantities

would be required to do this, and the thrust vector is completely described

by two. For this reason, two of the terminal errors are selected as the basis

of control. The two that are selected are considered to define the operating

mode of the guidance technique. There are a total of six possible modes

(Combinations of four items taken two at a time), of which two are investigated.

These are designated the h-0 mode and the h-V mode. Terminal position

error estimates provide the basis for control in the h-0 mode, whereas

terminal altitude and velocity error estimates are used for the h-V mode.

In practice much of the computation indicated in the step-by-step outline

of the guidance concept can be done prior to launch on the basis of the nominal

trajectory. The result is a matrix of time varying guidance terms which are

stored in the guidance computer. This matrix multiplies the column matrix

of estimated state variable deviations (from nominal) to produce the control

quantity deviation commands according to the equation.

Figure 4-7 is the block diagram representation of the guidance system model

described by this equation which is applicable to the lunar descent analysis.

,_^^_1, ,_h,,_+ 1; .... _,_ ,_quat_ons are used to predict terminal deviations

from the nominal trajectory and therefore to compute the commanded control
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Figure 4-7. Linearized Guidance Equations; Block Diagram

deviations. Linearization error will result in erroneous thrust commands,

even in the absence of sensor errors, unless the actual trajectory is coincident

with the nominal trajectory initially. If the trajectory which would be flown

assuming perfect sensor information is called the pseudonominal trajectory,

it is true that the terminal state of the pseudonominal trajectory generally will

not be identical with the nominal terminal state. Comparison is made tf
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seconds after thrust ignition, where tf is the nominal time of flight. This
terminal deviation of the pseudonominal trajectory from the nominal is caused
by linearization error and is not random in nature, since a given set of
initial deviations results in a determinable set of terminal deviations. If
sensor information is noisy, the actual trajectory will wander from the pseudo-
nominal, and the actual terminal state vector components will be random
variables with mean values equal to the pseudonominal values.

The object of this study is to obtain information concerning the random

variations in terminal state introduced by imperfect information sensing.

For this reason, linearization errors will be eliminated from the analysis by

assuming the vehicle is initially on the nominal trajectory. The pseudonominal

and the nominal trajectories are one and the same for this case. 2__/

Linear predictive guidance is basically an endpoint' guidance scheme.

The goal is to reduce deviations from the nominal trajectory to zero in

exactly the remaining time of flight. In a sense then, the effective response

time of the overall guidance and control system is equal to the nominal re-

maining flight time. This relationship is maintained by varying the

guidance terms as time progresses. As the time-to-go approaches zero,

the overall system response time will therefore also tend toward zero. The

implication with regard to overall system bandwidth is that it is very small at

thrust initiation, increases during flight, and becomes very large as the

nominal remaining flight time approaches zero.

When this phenomenon is examined in the light of certain system character-

istics, it becomes desirable to place a lower limit on the overall system

response time. For example, if guidance commands are derived from sampled

data, the system response time must be greater than the sampling interval.

Failure to meet this requirement will result in system instability. 3/ In

practice, ratios of 3:1 or better are maintained between response time and

sampling interval to ensure stability. :the linearized system model used for

error analysis is basically a sampled data system so that a lower limit on

system response capability is in order. This is provided by fixing the guidance

terms at time tf - n_t seconds where n is an aribtrary integer and At is the

analytical quantization or sampling interval. For this analysis n has been

arbitrarily set equal to 10. Thus, over the last 10_t seconds of flight the

guidance terms are constant at the values corresponding to t = tf - 10At.

g. Ref. 4-Z describes a noise-free simulation of the landing guidance technique

which produced information concerning pseudonominal deviations from the

nominal endpoint.

3. This statement is based on stability criteria developed in Ref. 4-3.
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d. Nominal Trajectory - The guidance technique used is based on

knowledge of a reference trajectory. In addition, the application of linearized

analysis requires the evaluation of numerous partial derivatives using ref-

erence values of the state variables. Trajectory evaluation and optimization

were not within the scope of this study, so that the nominal trajectory used,

a constant-thrust gravity turn, was selected somewhat arbitrarily. This

type of trajectory possesses the following characteristics which are consistent

with the general guidelines discussed inparagraph 4.2.2.

• Continuous, constant thrust requires minimum engine size, reliability,

and throttling.

• The gravity turn thrust program provides near minimum fuel expendi-
ture.

• The gravity turn approach offers good terrain clearance and visibility

characteristics. Final approach to the landing site is nearly vertical.

• The nominal thrust program automatically rotates the vehicle to the

proper hover attitude, so that no last-second high-velocity rotations are

required.

The nominal trajectory terminates at a hover point 500 meters above the

desired landing site. Although variations of the initial conditions are con-

sidered, the desired terminal conditions are fixed inputs to the nominal

trajectory determination program discussed in subsection 2.2 of Appendix D

(Volume V).

One of the areas investigated concerns the effect of varied nominal trajec-

tory initial conditions on the error sensitivity coefficients generated by

linearized error analysis. Investigation reveals that a complete set of initial

conditions cannot be arbitrarily selected. Several factors limit the selection

of initial conditions.

• The terminal point is specified: zero velocity, 500 meters, directly

above the nominal landing site.

• The class of nominal trajectories has been specified: a constant-thrust

gravity turn. {This means that F 1 = T is a constant designated To; and that

F 2 = a is equal to zero nominally.)

• Engine ignition is specified to occur at periselenum of the descent

orbit. Therefore Yo = 0.
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• The descent orbit is defined to be a synchronous ellipse. This implies

a functional relationship between altitude and velocity at periselenum. These

quantities will also be initial conditions for the descent trajectory h o and V o.

The indicated relationship is:

V
o

where r 1 is the nominal radius of the circular parking orbit.

When all these factors are considered, it turns out that there is but one

independent initial condition of those that are as yet unspecified. When any

one of ho, Vo, 8o, To/too' or tf is specified, there is but one constant-

thrust gravity turn that will satisfy all the constraints. For this study, initial

altitude has been selected as the independent condition.

For details concerning the nominal trajectory determination program, as

well as more complete characteristics of the five nominal trajectories gener-

ated see subsection 2.2 of Appendix D, Volume V.

e. Engine Control Subsystem - Analysis of the Lunar Landing Phase is

performed assuming essentially perfect control. This is done primarily to

eliminate consideration of mechanization characteristics of the vehicle

attitude and engine control subsystems. To take into account the fact that

these subsystems can include information sensors, control sensor errors are

injected into the thrust magnitude and angle channels between the guidance

subsystem output and the equations of motion. The general characteristics

of these error sources are the same as those of the navigation errors described

in paragraph 4.2.5. Thus,

f=_+T (4-z7)

One limiting characteristic is applied to the engine control subsystem.

This characteristic is related to bandwidth. The autocorrelation function

of white noise passed through the control subsystem, denoted _b(T), is con-

sidered to have its first zero at v = v o. Quantityr ois referred to as the

correlation interval of the subsystem. In general the video noise bandwidth

of a system is approximately equal to 1/2Vo. This characteristic of the con-

trol subsystem will be recalled during discussion of the ana!ytica] sampling

or quantization interval. Three values of To.will be considered during the

error analysis: I, 2, and 3 seconds.

On the basis of this discussion, figure 4-8 illustrates the analytical

model of the engine control subsystem.
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f. Sensor Errors - At any given time there are six error inputs to the

overall system - four navigation and two control sensor errors. The general

model of each of these errors has four components as described in paragraph

4.2.5. However, analysis of the system employing linear predictive guidance

was performed with bias errors set equal to zero. Thus, each of the six

sensor errors is made up to two components.

or

_(t)B =Yn(t)B + I--6-6- B (t) YPn (t) (4-28)
r B

i(t) D = in(t) D + I--_ YD (t r

and

ypn (t) (4-Z9)
D

_f(t) = (t) + _ F(t

whe re

FPn(t ) (4 -30)
r

[Yotl][Yotl]aod[ t ]
r r r

are the following diagonal matrices evaluated on the reference trajectory.

-y
1B

0

0

0

0 0 0

Y 0 0
ZB

0 Y3B 0

0 0 Y4B

(4-31)

YID

0

0

0

0 0 0

YZD 0 0

0 Y3D 0

0 0 Y4D

(4-3Z)

o]
F z

(4-33)
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Figure 4-8. Analytical Control Subsystem Model; Block Diagram

Subscripts B and D refer to beacon tracker and doppler navigator observables

respectively. Definition of the quantities included in equation 4-30 can be

inferred from material presented in paragraph 4.2.5. Under the conditions

specified for the nominal trajectory, the second term of equation 4-30 has

exactly the same characteristics as the first term and the two can be lumped

together. For this reason it will be the practice to omit the second term from

the control sensor error model during the discussion of the error analysis.
Then
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4. 3. I. Z Error Analysis

The precedix/g discussion of the analytical approach indicates that error

analysis is to be performed on a linearized model of the Landing Guidance

System. The linearized model of the actual system is shown in figure 4-9,

and an equivalent linearized model is illustrated in figure 4-10. The latter

is the model actually used for analysis. Detailed block diagrams of the

linearized navigation and guidance equations and the linearized equations of

motion appear in figures 4-5, 4-7, and 4-4,respectively.
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The linearized model is stillnot amenable to ordinary analytical tech-

niques. The reason is that the gain parameters of the linearized model

(elements of matrices [G], [S], [Aq and [B_ ) are time-varying functions.

This problem is met by employing a standard technique for the analysis of

systems with time-varying parameters - data sampling and time quantization.

The time of flight is divided into discrete intervals. At the beginning of each

interval all system parameters are sampled. Control quantity deviation

4-30
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Figure 4-I0. Equivalent Linearized System Model Actually

Used for Error Analysis

commands are computed on the basis of the sample values. All quantities

are held constant at the sampled values over the subsequent quantization in-

terval. At the next sampling time, sensor error distributions are again

sampled, system gain parameters are updated on the nominal trajectory, and

the actual deviations from nominal are updated by integrating deviations in

vehicle accelerations over the sampling interval and adding the results to the

actual deviations at the previous sampling time. The state variable updating

equations used are:

6hm+ 1 -- 6h + (_t)2_m 2 6h m

6e -68 +,_
m+ I m Z m
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-- + At •6_m+ 1 5Ym 5"¢m

5V = 5V + At 5_r
m+l m m

The subscript m is a time index indicating the value of the subscripted

quantity at

t=t
m

where

t = mAt; m = 0, 1, 2, 3 ...... M
rn

(4-36)

As indicated, retakes on values from zero to M where M is the highest

integral number of sampling intervals contained in tf, the nominal time of

flight.

The quality At is the quantization or sampling interval length. In this

analysis At must be long enough that control errors in successive intervals

are essentially uncorrelated and short enough to ensure that the updating

equations are good approximations. It is assumed that all navigation and con-

trol sensor bandwidths are at least equal to the bandwidth of the engine con-

trol subsystem. Then the correlation interval of the random error from each

sensor will be less than or equal to T o which is defined to be the correlation

interval of white noise passed through the engine control subsystem (para-

graph 4. 3. 1. 2). In this investigation the desire for independent control

errors in successive intervals requires that At be greater than or equal to

T O . Since updating accuracy is inversely related to sample interval length

At is set equal to the minimum value consistent with the previous considera-

tion, which is T O . The three values of T o to be considered are: T O = 1, 2, 3

seconds.

The equations used to update the actual values of the state variable de-

viations from one sampling time to the next are then

2
T

5hm+l : 5h + o 5hm _ m

Z

T

- 60 + o 6e
50m+ 1 -- m _ m

"-- 6_m + T "5_{m+ 1 o 5¥m

6V : 6V + T 5V
m+ 1 m o m

(4-37)
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These equations can be written in matrix form in terms of the general state

variable expressions :

x, **1
xZ = x2 I +

]

x 3 x 3 [

Lx4= m+l -x4J m

2.
T

0

g

0

0 0 0

Z
T
o 0 0

Z

0 "r 0
o

0 0 "r
C

l

x 1

J°

x z

x 3

x4 m

(4- 38)

Written more compactly,

-x + i-r"ol_''Xm+l --m _ J --ra

where x m is defined by equation 4-11 in paragraph 4.3. 1. 1. a.

Equation 4- 11 states that

" []x' " IA'l x + B f
--m _ . m--m m--m

(4- 39)

Matrix f can be expanded as per equations 4-26 and 4-27:--m

^ ,,, A '_f : f + f : [s] x +&

--m --m --m m --m --m

^
Finally, equation 4-15 yields an expression for x :

i m

" [a] y...X = X -
--m --m m m

The general observable quantities are used in the derivation. When the

final equations are to be applied, the appropriate matrices are substituted

for the general matrices [G]mand__m. For example, [GB] m and(___m
would be used if the system under study used beacon tracker observables.

Substituting the above expressions into equation 4-39 yields

x -" + 'o] x +['o] x--m+l --m m--m . m m--m

+ fro] [B'] m!m "[To] [B'] m [S] m [G]m_m
(4-40)

Reference to paragraph 4. 3. 1.1. f reveals the following expressions for

Y--m and f--m

Zm :En)
m

IYm = (in) + 1 Y I
- rn_m I00 {YP--n)m

(4-41)
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Equation 4-40 can be written more concisely:

X
--m+l --X_m +[C]m_mX + [D]m (_)-nm +[E]m (YPn)m

+ [Him (7 n)_
m

[g [_]m+E,o][_]m[_]m
-[-o][_]m[_]m[°Ira

where

MI

1

I_] --Eg [_"]
m m

th
An equation for the deviation in the i

equation 4-42.

4

state variable can be obtained from

(4-42)

(Xi)m+l --(Xi)m+l (ciJ)m(Xj)m+ _ (diJ)m(_Jn)m (4-43)

j=l j=l

4 2

+ £ (eij) m (YJ pn)m +I (hij) (_jn)
rn m

j=l j=l

Quantities (cij)m, (dij)m, (eli)m, and (hij)m the general elements of matrices

[C]m, [D]m, []E]m, and [H]m respectively.

The mean squared value of.(Xi)m+l can be written in the following manner.

The symbol <()_) av indicates an average over the ensemble of possible mis-
sions.

j=l

(ciJ)m (xj) m 12}v

}2;(dij) {_jn) m +

j=l m av _= i_ eiJ)m (YJPn)m }_v

(4-44)

2 {f(hij
+ _l )m

(f.)
3n m

v
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The right-hand side can be written in the indicated form because of the as-

sumed independence of the sensor error sources and also the assumed in-

dependence of sensor errors and state deviations at tm. The independence

assumptions can be stated mathematically:

< (_Jn)m > a =<Xim {yj Pn)rn_ =<x _" >
Xim im (f") = 0 for all i and j

jn m
V av av

< (yin) m(YJ Pn' >am v = _in'm (_Jn)m >av =<(Yj Pn'm (_Jn)m> av =0

{(_in) m

for all i and j

(_Jn)m>av =<(YiPn)m(YJ Pn) ) =<(_in)m(_Jn)m>avm, av

fori Cj

=0

If the guidance system were to receive perfect information at t = t m,
would act to reduce the deviation from the nominal trajectory. Thus, in

terms of ensemble mean squared values,

4

{{Xi)_+ _aV" {fXim +_'(¢ij)(xJ) }Z _a v _ avI j=l m I

it

(4-45)

in the absence of sensor errors. The following inequality, which includes sensor

errors can now be expressed:

{( 2}Xi) <{(Xi) Z _ + _{{ diJ)m (_Jn)m't Z}(
m+l mt

av av j=l av

+

+

4 2

F; f{eij) (Y'Pn)} _a
_ m j m v

2 2

(h..) (fin)

j=l \L 1j m " m• /av

Thus, the right-hand side represents an upper limit on the value of

< (xi)2m+ I> av which is denoted

(4-46)

i)
m+

L av
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The term (Xi)m=0 is the initial deviation of the pseudonominal trajectory

from the nominal trajectory. As stated in paragraph 4. 3. 1. 1.c, this quantity

is set equal to zero since it is a contribution to .the terminal error not caused

< >  onsi ereatoby landing sensor errors. Therefore, (x i =0 v
to zero in expression 4-46.

On the basis of inequality 4-46, it is easily demonstrated that

M-I 4 2

_ lM_(X')2 > < L<(xi)2M> - Z Z<{diJ)m(_Jn)m} >

av av m=0 j= I av

+ M1k Y. ei.)
m=0 j=t\L J m

(4-477

+ 7 hi) (fZ)
m=0 j=l kkL J m jn m v

(Sensor errors at one sampling time are independent of sensor errors at all

other sampling times. )

Since (dij)m, (eij)m, and (hij)m are constant over the ensemble of mis-

sions (they are evaluated on the nominal trajectory), they can be removed

from the ensemble averages. Thus

z /~ z\
<{(diJ)m (_Jn)m} >av = (dij)'m _YJn)m_ v

eiJ)m (Yj pn) m} ij)m \ lj n m
v av

(_n) m hij)m (_n) m(hi j)m =

av av

In paragraph 4. Z. 5yjn, yj Pn' and J_n are defined to be stationary, Gaussian
Z

random variables with zero mean values and mean squared values

Z Z naYJ'

and a respectively. Therefore the averages indicated in the above
p_Y. n F.

J J

equations can be removed from the time summations when these equations

are substituted into expression 4-47.
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xi)

v j=l m=0

2(dij an y.
l

4 M-1

{
j:l m=0 3

+ n Fj
j= I m=0 m

(4-48)

In matrix form:

[ _] _ _ r ,] _a + K' (4-497c; = [K] nC;y+ [K'] P Y naF
L M

Factors [K], [K'], and [K"] are the matrices of sensitivity coefficients

sought by this investigation. The general elements of these matrices, (kij),

(k'ij), and (k"ij) are defined as:

M-I

(kij) = _ (dij)2m ", {i"-l, Z, 3, 4, j = 1, Z, 3, 4}

m=O

M-1

,k,,_,:z '°'_"m{'-' " _'_'"'_:"_,_,4} ,4-_o,
m=O

M-1

Z ,,,,_,_{ }(k"ij) = ; i : 1, 2, 3, 4; j : 1, g
m

m-O

The sensitivity coefficient matrices are evaluated with the aid of a digital

program written for the IBM 7094 computer.

4. 3. 1. 3 Results

a. Presentation of Numerical Results The sensitivity coefficients

matrices are computed for each combination of the two guidance modes, two

navigation sensors schemes, three values of T O , and five different nominal

trajectories which are characterized by the nominal initial altitude. Thus,

a large amount of information is generated. Graphical presentation offers

the most efficient and useful means of presenting the computer results. This

4- _7



is done in figures 4-11 through 4-17. Every matrix element is plotted as a
function of nominal trajectory initial altitude for three values of To, two

guidance modes, and for both combinations of observables.

Matrix elements (k3j), (k'3j), and(k"3j ) are not computed because the

nominal value of X 3 = y at t = tf is undefined, since the magnitude of the

velocity vector at this time is nominally zero. In this situation small devia-

tions in the velocity vector could be in practically any direction. Thus, one

would expect the computed mean squared deviation in the final value of y to

be large and not very informative. In addition, matrix elements (k'i3) are

not included because the third observable (¢ in both observation schemes) was

thought to be best represented as not having a scale factor error component.

paZY3 = p(r2@ was set equal to zero. In this situation no informationHence,

would be contributedby the indicated matrix elements, so they were not

computed.

The sensitivity coefficient matrices are used to obtain upper boundaries

on the mean squared terminal position and velocity errors by means of the

equation
B

L(aXz )
lm

L( XZ.)
lrn

,.I4L

'.C X2m

= [K]

2
(Y

nY 1

2
O"

n YZ

2
(Y

n Y3

2
a

n Y4

÷ [K,]

2
(Y

PY
i

2
O"

P Y2

2

P Y3

Z
(Y

P Y4

+ [K,,]

2

naF 1

2

n _ F 2

(4-51)

When using the coefficient matrices [K] and [IK'] , care must be taken

to use the coefficient matrices corresponding to the particular system con-

figuration under investigation. System configuration is determined by four

pieces of information:

• Guidance mode: H-O or H-V control

• Observations scheme: Beacon tracker or doppler navigator

• Sampling interval: Correlation interval of white noise passed through

the engine control subsystem, To: 1, Z, or 3 seconds.

• Initial altitude of the nominal trajectory, h o.
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b. Sample Computation. - To illustrate the use of the sensitivity

coefficient matrices, a set of values for rms navigation and control sensor

errors were selected and a sample calculation performed for T O = 1 second

and h o = 20 kilometers. The selected sensor error parameters and the

resulting error components are summarized in tables 4-1, 4-2, and 4-3.

Table 4-1 gives the estimated terminal position and velocity errors resulting
from the assumed control sensor errors, and tables 4-2 and 4-3 contain

similar data for the two sets of navigation sensors. Tables 4-2 and 4-3 also

present overall error estimates.

TABLE 4- 1

MEAN SQUARED TERMINAL ERRORS CAUSED BY CONTROL

SENSOR ERRORS (SAMPLE COMPUTATION,

h = 20 km, T = 1 sec)
O O

Error

Source

Thrust

Magnitude
Control

Sensor

Thrust

Direction

Control

Sensor

RMS Sensor Error

(Symbol and

Magnitude)

naF1 = naT = 500 new

= -0 0
paF 1 pa T "

= 0.035 rad.
aFz=n n a

naF2 paa 0.0

Total Mean Squared Terminal

Error Caused by Control Sensor
Errors a

Resulting Terminal Mean Squared

Error Components

Altitude Error
2

L(ah Fi)M
(meters)

0.0_39

0.0

Z. 73

0.0

2.75

Central Angle

E_ror

L(_8 Fi)M

(radians) 2

7.90 x 10

0.0

-14
9.25 x I0

0.0

-14
17. 15 x 10

Velocity
Error

L(_ Fi)M

-14
1.23

0.0

0.0

0.0

l. Z3

a. Results presented in this table are applicable to all four possible com-

binations of observation (navigation) systems and guidance modes.

The sensor capabilities are typical of the state of the art, assuming 1-

second smoothing time, which is compatible with the value of r o used in the

sample.
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Typical conclusions concerning results of the sample computation are:

• The dominant error source in the beacon tracking navigation scheme

is the line-of-sight angle-rate measuring device.

• No error source can be regarded as dominant with the set of doppler
navigation sensor errors.

Switching from the H-0 to the H-V guidance mode increases all three

termini1 error components in the system using beacon tracking observ-

ables and two out of three (all but velocity) components when doppler

navigation observables are used. Since velocity errors are critical,

H-0 guidance is indicated with beacon tracking and H-V guidance with

doppler navigation.

• In general, rms terminal errors are smaller when doppler navigation
observables are used compared to beacon tracker results.

Thus the system configuration indicated by the sample computation results

uses doppler navigation observables and the H-V guidance mode. This con-

clusion is based entirely on the magnitude of the terminal errors and does

not consider mechanization, fuel consumption characteristics, or any other

factors which also must be considered before final system design is attained.

c. Results of Parameter Variations - During the error analysis of

linear predictive guidance, several system parameters are treated as vari-
ables :

Guidance mode: H-8 or H-V

Observables: beacon tracker or doppler navigator

Quantization interval, To: 1, Z, or 3 seconds

Nominal trajectory initial attitude, ho: 10, 15, 20, 25, and 30 kilometers.

The following paragraphs discuss the effects of these variations.

(1) Guidance Mode

H-0 guidance is the mode used in Ref. 4-1 from which the linear predictive

guidance concept is taken. H-V guidance is an alternate scheme postulated

as a method which would offer reduced terminal velocity errors. The com-

puter data presented in figures 4-11 and 4-17 shows that all velocity error

components are reduced by the switch to H-V guidance when doppler naviga-

tion observables are used and all but one when beacon tracking navigation is

employed. The one in the latter case is the velocity error component caused

by range rate measurement errors. One can conclude, therefore, that

terminal velocity errors are reduced by changing from H-0 guidance to H-V
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guidance when doppler navigation observables are used. A reduction is also

realized when beacon tracking observables are used so long as angle rate

measurement error is not the dominant contributor to the terminal state er-

rors. The sample calculation performed indicates that this qualification is

significant. The sample also indicates that the velocity error reduction ob-

tained when doppler navigation observables are employed is not particularly

signficant (l. 18 m/sec rms with H-V guidance as opposed to 1.53 m/sec rms

with H-8 guidance). Thus decision between the two guidance modes can be

expected to be determined by other factors; e.g., fuel usage and noise-free

pe rfo rmanc e.

(Z) Observation Scheme

The only practical means for comparing the two observation schemes

within this report lies in the sample computation using present state of the

art sensor capabilities. On this basis it is seen that the doppler navigation

scheme yields consistently smaller terminal error components. The per-

tinent results from tables 4-Z and 4-3 are summarized in table 4-4.

(3) Quantization Interval (To)

The quantization interval (To) used in the analytical model is set equal to

the correlation interval of white noise passed through the engine control sub-

system (paragraph 4. 3. 1.1. e). This relationship is maintained throughout

the analysis so that increasing the value of T o is equivalent to reducing the

bandwidth of the engine subsystem. In addition, the guidance term matrix

IS] is frozen at some time prior to the nominal final time (paragraph

4. 3. 1. 1. c) and this time is related to T O • Since T O is related to quantities

that are significant in the design of the guidance and control system, the

effects of variations are of interest. The following statements are based on

the graphical presentation of computer results given in figures 4-11 through
4-17.

Mean squared terminal error components caused by control sensor

errors increase as V o goes from 1 to 3 seconds. The magnitude of the

increase over this range is approximately a factor of 10.

• All mean squared terminal altitude error components increase as T o

inc tease s.

All mean squared terminal central angle error components except that

contributed by altitude measurement in the doppler navigation system

increase as T o increases. Thus terminal angle errors increase with

increasing Vo when beacon tracking navigation is used and can be ex-

pected to increase in a similar pattern when doppler navigation is

employed so long as altitude observation errors are not the dominant
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TABLE 4-4

COMPARISON OF MEAN SQUARED TERMINAL ERRORS RESULTING

FROM BEACON TRACKING AND DOPPLER NAVIGATION SENSOR

ERRORS (BASED ON STATE OF THE ART SENSOR CAPABILITY)

T = 1 second; h = 20 km
o o

Guidance Mode

H-0 guidance

H-V guidance

Obs e r vation

Scheme

Beacon tracking

obs e rvable s

Dopple r navigation

obs e rvable s

Beacon tracking
obs e rvable s

Doppler navigation

observable s

Mean Squared Terminal State Errors

Altitude

Error

(meters) 2

Central Angle

Error Z
(radians)

-14
51.8x I0

Velocity

Error

(m/sec) z

Z.8685. 16

0.09Z
-14

13.3x 10

-14
13.8 x I0

1.11

7. Z894.8

O. Z84
-14

15.07 x I0 0. 146

source of terminal angular error. In the sample computation per-

formed in paragraph 4. 3. I. 3. b altitude sensor errors are significant
but not dominant.

All mean squared terminal velocity error components either increase

or change insignificantly as T o increases except those caused by range

measurement errors for beacon tracking navigation and altitude meas-

urement errors for doppler navigation. Thus velocity errors increase

with increasing T n as long so these error sources are not dominant. In

the sample computation based on state of the art sensor hapability,

neither range nor altitude observation errors contribute dominant

terminal velocity error components. Therefore velocity errors in-

crease as T n increases for the sample case.

(4) Nominal Trajectory Altitude, h o

No g_neralization car, be rnadc concerning the -_r,_.... , of eha_n=in=oo h O on the

terminal error components. Nearly as many of the error sensitivity coeffi-

cients presented in figures 4-II through 4-17 decrease as increase with increas-

ing h o. The overall effect on terminal position and velocity errors is therefore

dependent on the particular characteristic of the sensitivity coefficient which

yields the dominant component of the terminal state error in question. For ex-

ample, angle rate measurement errors are the most significant in the sample

computation performed using beacon tracking observables (see table 4-2).
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Therefore the manner in which sensitivity coefficients Bkl4, Bk24, and Bk44

change as h o changes determines how the terminal position and velocity errors

vary as h o changes. Curves contained in figures 4-12, 4-13, and 4-14 indicate

that all three of these coefficients increase as h o increases so that terminal

position and velocity errors can be expected to do the same,

4. 3. I. 4 Conclusions

The following conclusions are based on material presented in paragraphs

4.3. 1.3. a, 4.3.1.3. band 4.3. 1.3. c.

Characteristics of terminal state error distributions for any given group

of sensors are highly dependent on which sensor is the dominant error

source.

• Generally, increasing TO results in increased terminal mean squared

errors.

When state of the art sensor capabilities are assumed for both naviga-

tion sensor schemes, doppler navigation results in smaller terminal

errors.

Changing from the H-O to the H-V guidance mode does result in reduced

terminal velocity errors when doppler navigation is used; however, the

reduction is not very significant. In addition, it is possible for this

guidance mode switch to result in increased terminal velocity error

when beacon tracking navigation is employed.

Terminal position errors caused by navigation and control sensor errors

are not serious, being on the order of a _ew meters (based on sample

computation results). The situation with regard to velocity errors is not

so clear-cut. The landing mission profile as envisioned in this study is

made up of two subphases: descent-to-hover, and hover-to-touchdown.

Linear predictive guidance is considered to be used down to the hover

point with some undefined terminal guidance system controlling the

actual touchdown. For manned flights, this touchdown maneuver is

considered to be under manual control. For this case velocity errors

at hover of the magnitude indicated in tables 4-Z and 4-3 are felt to be

satisfactory. For the unmanned case one can expect relaxed touchdown

velocity requirements so that the terminal (hover point) velocity errors

resulting from state of the art sensor capability are expected to be

satisfactory even if the hover-to-touchdown guidance system offers no

improvement in touchdown velocity uncertainty. (This is the case if

thrust is simply terminated at the hover point, allowing the vehicle to

descend to the surface under gravitational acceleration).
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4.3. 2 Lunar Landing Usin8 Modified Proportional Navigation

The second guidance technique investigated is modified proportional navi-

gation. This guidance technique was evaluated by Kriegsman and Reiss

(Ref. 4-4) assuming a flat moon and short initial range. This assumption is

not valid for the situation presently under investigation because it is desired

to use the technique over significantly longer range. (Landing engines are

ignited at periselenum and burn continuously until touchdown.) Therefore the

guidance equations are modified to include spherical lunar characteristics.

A digital simulation of the landing system is used to evaluate guidance

system performance and also to determine the effects of navigation sensor

bias errors. In addition, the adjoint method of analysis (see subsection 6. 2

of Appendix A, Volume V) is used to determine error sensitivity coefficients

which can be used to evaluate the effects of random navigation sensor errors.

The analytical effort can be divided into two categories, as is the analysis

of linear predictive guidance. First, background analyses are discussed for

the purpose of establishing a system model. Second, the actual error analysis

is performed. Discussions presented herein will be primarily qualitative in

nature, and as much of the actual analytical effort as possible is reported in
the appendixe s.

4.3.2.1 Background

a. State Variables, Control Quantities, and the Equations of Motion

The basic coordinate system used for analysis of modified proportional navi-

gation guidance is shown in figure 4-18. It is an inertial polar coordinate

system with its origin at the nominal landing site. The state variables are
R, R, _t,'and _ as defined below.

R: Line-of-sight range from the spacecraft site to the desired landing site.

, (in meters)

_: Line-of-sight angle to the landing site measured from landing site local

vertical. (in radians)

Quantities I_ and _ are the time derivatives of R andS. Since the problem has

been reduced to two dimensions for this analysis, only four state variables are

required to specify vehicle position and velocity relative to the landing site.

T,_ ,a_,_,,,_ an inertial rectangular rn_r_i,_ate ._y.qtem will sometimes be

used. This system, also centered at the nominal landing site, is defined by
the three coordinate axes X, Y, and Z:

X: Horizontal axis in vehicle plane of motion, positive toward spacecraft

Y: Vertical axis, positive upward

Z: Horizontal axis forming right-hand coordinate system with X and Y
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Finally, some equations are written in terms of a rectangular coordinate

system fixed to the space vehicle. The body coordinates X B, YB' and Z B are

the roll, yaw, and pitch axes respectively. The attitude control system is

assumed to maintain the roll axis X B along the line-of-sight to the desired
landing site. For the two-dimensional analysis performed herein, the yaw

axis is assumed to be in the plane of motion.

The control quantities are accelerations along the vehicle roll and yaw

axes respectively. Figure 4-19 shows the accelerations acting on the space

vehicle. Note that a R, the acceleration along the roll axis, is considered to

be positive in the negative X B direction. Similarly, the normal component of

acceleration (all) is positive in the negative YB direction. In addition, there

is the acceleration of gravity which acts along the radius vector from the

lunar center of gravity.

During analysis two forms of the equations of motion are used. The first

is given in terms of vehicle accelerations in the X and Y and Z directions.

= _ U:__X + aX (4-52)3
r

.(r c + Y)

3
r

+ ay

=_-_Z + a Z
r

Quantities a X, ay, and a Z are the appropriate components of the total vehicle

thrust acceleration vector. Specifically, for the two-dimensional analysis to

follow,

= - _---3X + a R sin _l + all cos fl (4-53)
r

.. + Y)

Y = c3 + aR cos_ - a_ sin_
r

Z=0

This formulation of the equations of motion is used in the digital simulation

analysis program to be discussed in a subsequent section.

The second formulation is proposed for use with the adjoint error analysis.

In this case it is desirable to write the expressions in terms of R, _, a R, and

all"

4 -55



P LANDING
SITE

L _,u._ •
vw ACCELERATION VECTOR

VEM I CLE

X
v

1750C - VB - 39

Figure 4-19. Acceleration Diagram

4 -56



: RhZ - cos ( - e)+ aR (4-54)
r

_i = _ sin (a- @) - 21_+

L r

These equations are linearized and used in the formulation of the adjoint system

model. (See subsections 6.2 of Appendix A and 3.4 of Appendix D, Volume V. )

At times it will be convenient to define general state variable and control

quantity matrices as in paragraph 4.3. 1. 1. a. These are column matrices or

vectors with general elements X i and F i respectively.

X-_

X
1

X Z

X 3

X 4

R

R

= state variable vector (4-55)

F1 i aR

F = - a_ = control quantity vector (4-56)-- FZl

b. Observables. - The input information is obtained by a beacon track-

ing sensor system. The observables are line-of-sight range R, and angle _%

to the vehicle from the landing site and their time derivatives, t_ andS/. Note

that the line-of-sight angle is measured in an inertial system centered at the

landing site and not with respect to vehicle local vertical (figure 4-18).

The pertinent navigation equations are degenerate since the state variables
and observables are identical.

c. Guidance Technique. - Basically, the guidance concept used is a

form of proportional navigation. The basic guidance technique is evaluated

by Kriegsman and Reiss in Ref. 4-4 assuming a flat moon and short initial

range. The analysis performed in the indicated reference is herein general-

ized to the spherical moon case. The guidance equations are written in terms

of a R, a_, and the observables assumed to be available. Finally gravity

compensation terms are added to the guidance equations to counter the dis-

turbing influence of lunar gravitation. Without the compensation terms, the

vehicle is found to have a tendency to impact before reaching the designated

landing site. With the indicated modifications, the equations giving the

commanded values of a R and a_, denoted aAR and âl% are:

4 -57



.A Z

^ K-I (R) _ ^aR- K _- + cos_ (4-57)
r
c

ai_ = (S +
r
c

These equations describe what is referred to as the MPN guidance mode (Mod-

ified Proportional Navigation). The symbol ^ indicates a measured value or

a quantity computed from measured quantities. Note that the inserted gravity

compensation terms are based on a constant force field approximation. The

two constants, S and K, are guidance parameters.

Digital simulation shows that appropriate selection of the guidance param-

eters S and K will cause the vehicle to follow a trajectory very nearly iden-

tical with the optimum trajectory described in subsection 1.2 of Appendix D

(Volume V). These values are S = 1.5 and K = 2.0. This is desirable from

the standpoint of fuel consumption but also implies that the vehicle approaches

the landing site on a rather shallow trajectory. The latter tendency is not

desirable and is countered by developing a further modification to the guidance

technique which results in vertical touchdown. This scheme is denoted MPN/

VT guidance and is characterized by the guidance equations

KI.I .A^ (R)z
aR = K1 i_

(4-55)

A Z^

R

Note that no gravity compensation terms are included. This results from the

fact that the lofting tendency of these modified guidance equations is found to

provide adequate terrain clearance without additional compensation (shown by

digital simulation). Quantities K 1, S 1, and S 2 are guidance parameters whose

values influence system performance. In this analysis the values of these

guidance parameters are: K 1 = 3.0, S 1 = 3. 1, S 2 = 0.8.

The MPN/VT guidance equations can of course be used over the entire

descent phase. However, the lofting tendency will increase fuel consumption

over that noted using the MPN equations. For this reason, two combinations

of MPN and MPN/VT guidance are postulated. These are denoted MPN/VT -

A and MPN/VT-B.

Under MPN/VT-A guidance, the landing vehicle uses the MPN guidance

scheme until the line-of-sight range is reduced to 305 meters (1000 ft) and

then switches to MPN/VT for the remainder of the flight.
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For MPN/VT-B guidance, a fictitious landing site is created at some

arbitrary altitude, YH, directly above the desired landing site. (See figure
4-20.) YH equals 305 meters (1000 feet) in this analysis. The MPN guidance

equations are used until R l is reduced to 305 meters, with the guidance

equations evaluated as if P' is the desired landing site. Thus

)z
^ K- 1 (RI ^

a - + _ cos$2 1 (4-59)
R I K _I r

C

S = 1.5; K= Z.0

As shown in figure 4-20, the vehicle attitude control system still maintains the

vehicle roll axis along the sightline to the actual landing site. Thus a R and
a$2, the actual acceleration commands used on board the vehicle, must be

written in terms of a R1, and a $21 . In addition, R 1 and _1 must be expressed in

terms of R and $2, since these remain the observable quantities regardless of

the guidance mode employed. The appropriate equations, derived in sub-

section 3. 1 of Appendix D (Volume V) are:

^ ^ ^ ^ ^

a R = a cos _ - a sin
R1 $21

^ ^= a sin _ + a cos
_ ^RI $21

(4-60)

where

^ -1
- sin

^

R 1

^

$21

YH 1(vz + _z _ zv H _ cosfi)l/z

= 7 +£z'zYHRc°s
^ -I [ YH sins2

= _+ sin L(y_ . I* 1/Z+ _z z_H R cos fi)

(4-61)

(4-62)

^

When R 1 is reduced to 305 n-xeters, guidance switches to the MPN/VT mode

described by equation 4-58.

Simulation of lunar landing using both hybrid guidance concepts, MPN/VT-A

and MPN/VT-B, shows the latter to be more efficient from the fuel consump-

tion aspect. Final selection of MPN/VT-B over MPN/VT-A is based primar-

ily on this consideration.
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Figure 4-Z0. Geometry Pertinent to the MPN/VT-B Guidance Concept

By using the hybrid guidance scheme denoted MPN/VT-B, the vehicle is

made to fly a trajectory very similar to that derived as being optimum in

subsection 1. Z of Appendix D (Volume V), until the line-of-sight range to the

fictitious landing site has been reduced to 305 meters. At this point, the

MPN/VT guidance mode is introduced by switching guidance parameters and

dropping gravity compensation terms. Thereafter the vehicle flies a more

lofted trajectory (compared to the MPN trajectory) which approaches the

desired landing site from a nearly vertical direction in accordance with the
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considerations outlined in paragraph 4. 2. Z. Note that the vehicle roll axis is

always aligned toward the landing site by the attitude control system. Thus

this axis is essentially along the landing site vertical at the end of the descent

maneuver, and the vehicle is in the proper attitude for touchdown.

d. Vehicle Characteristics. The following paragraph describes the

mechanization considerations applicable during analysis of the MPN/VT-B

guidance concept. The areas covered are: vehicle size (mass), attitude con-

trol, engine sizing and dynamics, information sensor dynamics, and fuel

specific impulse (Isp) selection.

The initial mass is obtained by considering a typical mission in which the

total payload placed Iunar orbit (assuming earth launch by a Saturn C-5

booster) is to be landed on the lunar surface. The resulting mass breakdown

in kilograms is:

• Initial mass at translunar injection 40,816

• After allocating fuel for 30.5m/sec (100 ft/sec)

correction during midcourse 40,363

• After boil-off during midcourse 40,068

• After allocating fuel for attitude control during midcourse 40,045

• After lunar orbit insertion pulse 32, 109

• After transfer deorbit pulse for synchronous ellipse 31,066

• At periselenum {landing phase initial mass) 31,066

Thus, the initial vehicle mass used throughout the analysis of modified pro-

portional navigation is 31,066 kg (68,500 pounds, earth weight).

The attitude control system assumed for the digital simulation of lunar

landing is identical to that described in Appendix B of Volume IV, for use

during rendezvous. Basically the attitude control system roll-rate stabilizes

the vehicle while maintaining the roll axis along the Iine-of-sight to the land-

ing site.

For the adjoint analysis of the linearized system using MPN/VT guidance

equations (subsection 3.4 Appendix D of Volume V), perfect attitude control

is assumed. In addition, second order linear filters, characterized by the

transfer functions Gl(S) and Gz(s ) are included to represent longitudinal and

lateral engine dynamics in the adjoint analysis. Thus:

aRlS ) = GllS ) aRlS) (4-63)

aa(s ) _- Gz(S ) a (s)
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where

G1(s) :
2_ 1 s z

l+_s+--

_1 _ZI

(4-64)

Oats)=
2_ z s z

l+--s+--

_2 w22

_1 = _z = o. 7

el = _2 = 5 radians/sec

Sensor dynamics are also represented by linear second order filters in

the adjoint error analysis. These filters are represented by transfer func-

tions GR(S ), G_(s), G_(s), and G_(s). The input to the sensor is the actual

value of the observable plus error terms. Random error at the sensor input

is assumed to be white Gaussian. (Band limiting is provided by the filter. )

The measured value of the observable appears at the output of the filter

assumed to characterize the sensor. All four sensor filters are allowed to

be identical, and these in turn are identical in form to the filters character-

izing engine response:

I

GR(S ) = GA(s ) = Ga(s) = Gh(s) = z
1 + (z)(0.v) sS + --

5 25

(4-65)

The effect of fuel specific impulse, I__, on touchdown mass is shown in
=IJ

figure 4-21. This curve is a plot of the ratio of touchdown mass, mr, to

initial mass, m o, versus I s based on the optimum trajectory discussed in

subsection I. 2. of Appendix _ (Volume V). The initial altitude and thrust are

18,288 meters (50,000 feet) and 133,500 newtons (30,000 pounds) respectively.

It is seen that the ratio mf/m o increases as Isp increases, implying that the

highest Ispconsistent with the state of the art is the logical choice. For the

analysis of modified proportional navigation, an Isp equal to 420 seconds is

selected. This choice appears to be commensurate with the most efficient

fuels likely to be available.

For this investigation the specifications of the RL-10 engine are selected to

represent the class of engines that will be available. The important param-

eters are:

• Maximum thrust level: 66,765 kilograms (15,000 Ib)

• Mass: 136 kg (300 Ib, earth weight)

• Throttling range: I0: I
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It remains to specify the number of engines to be used. This number is se-
lected on the basis of a tradeoff analysis involving nominal periselenum
altitude, number of engines, mass remaining at touchdown, and, to some
degree, abort considerations. The analysis is discussed in subsection 3.3 of
Appendix D (Volume V); the resulting number of engines is two for the nominal
mission. Thus the maximum thrust level is 133,500 newtons (30,000 pounds).
The digital simulation program is set up with the thrust vector magnitude
limited at this value. In the event that the commanded acceleration vector
magnitude requires a thrust level exceeding this limit, the thrust vector is
pointed in the commanded direction and maximum available thrust is applied.

e. Trajectory. - The modified proportional navigation guidance tech-

niques as used on-board does not require knowledge of a reference trajectory.

The guidance commands are obtained from nonlinear equations operating on
the estimated values of the state variables. However, in reality there is

_ome particular set of initial conditions that is more desirable than others.

Typical reasons for preference are thrust magnitude requirements, landing

site visibility, and fuel consumption. These factors are considered in a

tradeoff investigation described in subsection 3.3 of Appendix D (Volume V).

The values selected as nominal initial (periselenum) conditions are:

R = 312.7 km (1. 026 x 106 feet)
O

V = 1,7Z3 m/sec. (5654 ft/sec)
o

h = 38. 1 km (1. Z5 x 105 feet)
o

where V o and h o are the initial velocity and altitude respectively.

During descent the guidance mode is switched from MPN to MPN/VT when

the range to the fictitious landing site is reduced to 305 meters (1000 feet).

Based on digital simulation, the values of R, and R at the interface between

the two guidance modes are:
R = 496 meters (1,629 feet)

R = 43. 6 m/sec (-143 ft/sec. )

Knowledge of a reference trajectory is required to implement the linearized

adjoint analysis of the terminal portion of the landing maneuver (that portion

using MPN/VT guidance). Approximate closed form solutions to the nonlinear
differential equations are developed in Appendixes D of both Volumes IV and

V for this purpose. These closed form solutions are used to evaluate the time

varying coefficients of the linearized equations describing the adjoint of the

Landing Guidance, System.

f. Sensor Error Model. - Basically the error model is the same as

the general model described in paragraph 4.2. 5. The general statements

describe the error characteristics at the output of the filter describing sen-

sor dynamics.
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Random fluctuation errors are evaluated by means of a linearized error

analysis technique, whereas the effects of bias error components are evaluated

by using a forward digital simulation of the nonlinear system. The filter

transfer functions describing sensor dynamics are not the same in these two

approaches. For the linearized analysis, sensor dynamic characteristics are

approximated by a second order filter with transfer function Gxi(S ) given by

1

1 +_

Gx.(S) =
1 2¢x. 2

1 S
S +

2
X.

I COX.

1

(for random error components) (4-66)

Xo

1

_X.
1

COX.
1

= the general state variable

=0.7

= 5.0 rad/sec

On the other hand, bias errors are evaluated assuming a first-order time lag

characterization of sensor dynamics:

1

Gx.(S) = 1 + T (s)
1 X.

1

(for bias error components) (4-67)

(The values of Txi used for error analysis are unknown. ) In addition, first-

order time lags are issumed to be present in the engine responses (lags of 1

and 2 seconds are considered).

The measured values of R,_ , and their time derivatives occur at the out-

puts of the sensor filters and are denoted by the symbol (^); e.g. the meas-
ured value of R is R.

No control sensor errors per se are considered in the analysis of modified

proportional navigation.

4. 3. 2.2 Error Analysis

The complete error analysis of lunar landing using the hybrid guidance con-

cept MPN/VT-B is performed in two parts. Bias errors are treated using hhe

digital simulation of the nonlinear Landing Guidance system, and the effects

of random fluctuation errors are evahated using the adjoint error analysis

technique.

a. Bias Errors - The degradation of the MPN/VT-B guidance concept

by the two types of bias errors (constant magnitude and constant percent) is
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determined by means of the same digital simulation program used for deter-

mining the error-free performance of the guidance scheme. To do this, the

values of R, I_, _ , and _ used in the guidance equations are replaced by the
measured values of these quantities denotedR, and

1

and

For this part of the analysis, sensor dynamics are characterized by a

simple time lag. In general the measured value of the i TM observable can be

obtained from the expression

_'i Is) = 1 + "r s i (s) ÷ '_ib +
Yi yi p b 100

where '_ib and Y.Pb are defined in paragraph 4. Z. 5. Then

v.ls)

+ _" s = ) + Yib +y, lO0
1

Yi(s) =

^ ~ Y.(s)
Yi (s) - Yi (s) + Yib + Y.Pb

i I00

T S

Y.
1

The factor s in the denominator indicates an integration.

^

Y i (t) + _ib + Y.Pb --
1

T

Y.
I

Yi(t ) t

IO0

Therefore

dt (4-68)

Thus the measured values of the state variables are:
^

R

^ A =/t R - R+ R b+ RPb I0---Odt
Y1 _ R TR

"0

^ _ =ft _t - R + _tb+ RPbl-_ dt

YZ ----R _0 Vl_

Tn

dt

dt

^ n
t _ -_ +ftb+^Pb'--zw--_-,uu^

Y3=^ _ =f v_

0

tg fl+hb +6 Pb1-_Y4 m

(4-69)
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The digital simulation program integrates the equations of motion forward

(starting with the nominal initial values of the state variables) until Y = 0. At

this time the values of Y, X, and ]_ are printed out, and the effects of the bias

errors are ascertained by comparison with error-free performance. (X and

Y here refer to the artesion coordinate system centered at the landing site, see

figure 4-18.) The digital simulation uses MPN guidance with a fictitious land-

ing site 305 meters (1000 feet) above the nominal landing site over most of the

descent. (See paragraph 4.3.Z.l.c for the guidance equations.) When _l

(observed range to the fictitious landing site) is reduced to 305 meters (1000

feet), the guidance equations are switched to those defining the MPN/VT

guidance mode.

The analysis technique is to assign a value to the error components of one

of the measurement errors; i.e., R b and iRPb, the range measurement errors.

All other bias error components are set equal to zero. Then the simulation

program is run, making use of equations 4-69. The terminal values of Y, X,

and X that result are the terminal errors produced by bias errors in the range

information sensor. Information concerning the effects of range-rate, angle,

and angle-rate measurement bias errors is obtained in a similar manner.

b. Random Fluctuation Errors. - Random fluctuation errors are evalu-

ated by computing error sensitivity coefficients using the adjoint error analysis

technique described in subsections 6. 2 of Appendix A and 3. 4 of Appendix D

(Volume V). The important steps in the adjoint error analysis are:

• Construct a linearized model of nonlinear guidance and control system
(block diagram form).

• Derive the block diagram of the adjoint linear system.

Develop a digital simulation of the adjoint system and use it to compute

sensitivity coefficients relating statistical parameters of the random

sensor error components (_n and yiPn Y_) to the statistics of the re-

sulting terminal state errors.
Iuu

The adjoint analytical technique is applied only to that portion of the landing

maneuver employing MPN/VT guidance equations (_I less than 305 meters, or

R less than 497 meters). Terminal position and velocity errors are caused

primarily by random sensor errors occurring in the final portion of the landing

maneuver because of the self-correcting character of the closed loop guidance

and control system. (Past experience supports this statement. ) This is _e

reason that only the MPN/VT guided portion of the landing maneuver is ana-

lyzed using the adjoint technique.

In the adjoint analysis, sensor dynamics are represented by second-order

filters as stated in paragraph 4.3. 2. 1. d. When error analysis results are

discussed, input random fluctuation errors will be characterized by their rms
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values: nUYi and P_Yi" These quantities refer to sensor noise characteristics

at the output of the filter representing the i th sensor. (For the adjoint analysis,

white noise is assumed at the sensor inputs.)

4.3.2.3 Results

This paragraph demonstrates the methodology developed to estimate sensor

error effects and indicates dynamic range requirements for the nominal lunar

landing mission considered herein.

The. results and discussions of error analysis presented in this paragraph

are pertinent only to the guidance scheme and the nominal mission profile

selected in paragraph 4.3. Z. 1. Since the effect of random errors will be

governed by the performance of the guidance system during the final phase of

the landing trajectory, random error propagation coefficients will be generated

for the MPN/VT portion of the trajectory. Bias errors and dynamic lags will

be evaluated by simulating specific bias error levels in the forward trajectory

program which considers the entire trajectory. Consequently, the effect of

bias errors on fuel consumption is available.

The term "bias error" refers to an error which is random over an ensemble

of trajectories but which is fixed for any given trajectory. Hence one can

refer to the standard deviation associated with such an error.

The term "random error" or "random disturbance" refers to an error which

is random during any single trajectory. This also appears as a "fluctuation

error" since the error level fluctuates with time. It is possible to reduce the

level of a random error during any given trajectory by means of smoothing,

whereas bias errors, although random over an ensemble of trajectories, cannot

be reduced by smoothing during the course of any given trajectory.

a. Sensor Error Effects for the MPN/VT-B Guidance Concept. - The

accuracies with which range, range rate, line-of-sight angle, line-of-sight

angular rate {defined in paragraph 4.3.2. 1. a) must be measured depend

upon attendant fuel penalties and allowable touchdown condition deviations.

Sensor accuracy requirements generated herein will be appropriate only for

the reference mission profile selected in paragraph 4.3. Z. 1; namely the MPN/

VT-B guidance concept with thrust limited to 133,500 newtons (30,000 pounds}

maximum.

The first results to be presented are the sensitivity coefficients generated

by the adjoint error analysis. These coefficients relate the mean squared
terminal deviations in Y, Y, X, and X to the mean squared values of the

random sensor errors which cause them according to the matrix equation

given below:
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Here, X and Y refer to the cartesian coordinate system centered at the
Z Z

landing site {see figure 4-18). Since the quantities a and c are set equal
P

to zero for this analysis, the third and fourth columns of matrix of primed

coefficients are not computed. With this fact into account, the numerical

values of the two sensitivity coefficients are as follows:

kll k12 kl3 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

1.59 xl0 -I 1.98 x i0 -I 3.49 xl0 -2 5.40x i01 "

1.08 x 100 1.25 x I00 8.64 x 10 -2 1.32 x 102

-15 -13 -9 -7
9.54 x i0 I.I0 x i0 5.63 x i0 3.39 x I0

1.69 xl0 -14 5.29x 10 -14 5.29 x i0 -I0 5.11 x i0 -8

m

1 klz

!

kz i kZZ

I !

k3 1 k3z

t !

k41 k4z

-6 -5
7. 78 x I0 1.23 x I0

\

-3 -5
3. 78 x 10 3.54 x i0

-17 -17
1.62 x I0 6.48 x I0

-18 -18
4.45 x 10 9.49 x i0

These coefficients are used to evaluate sensor capability expected to exist

in the 1970 time period. These typical sensor error levels are presented in

table 4-5. Three degrees of sensor error are postulated: low, medium, and

high.

Table 4-6 gives the individual contributions of each random error source

to the total terminal mean squared position and velocity deviations for each of

the three levels of sensor capability. In general it can be seen that the hori-

zontal error components, _2X and o_( are small enough to be considered

negligible. However, the vertical error components, especially _ (vertical

velocity} are not negligible. Table 4-6 shows that the rms terminal a velocity

error increases sharply as the sensor error level increases, as expected.
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In addition, the most significant contributors to the terminal velocity errors

are range measurements and line-of-sight angular rate measurements. This

is true for all three sample levc!a of sensor capability.

Next the effect of the bias components of sensor error are considered.

Estimates of bias error effects can be obtained through the use of the adjoint

analysis technique, but they are not in this study. Rather the forward digital

simulation program is used with the bias errors introduced by means of the

equations discussed in paragraph 4.3.2.2. a. Thus the bias error analysis is

not subject to the assumptions attendant to linearization and provides the
effect of sensor bias error components on X, X, and _/" at the true touchdown

point, Y = 0. This analysis technique also allows one to determine the effects

of bias error components on fuel consumption.

As described in subsection 3.1 of Appendix D (Volume V) the digital simula-

tion program accepts both types of bias error components (constant magnitude

and constant percent, scale factor) in alI observed quantities. As in the anal-

ysis of random errors, three degrees of sensor capability are selected.

(These are given in table 4-5.) The bias error components indicated in

table 4-5 are applied to the landing vehicle during theentire landing trajectory
(periselenum to touchdown), and the vaiues of X, X, Y, and the total fuel

consumed are determined at the point Y = 0. The results are given in tables
4-7, 4-8, and 4-9, which show dynamic errors (X, 1_, and _r) and the total

fuel consumption respectiveIy. The results contained in these rabies are

discussed in the following paragraphs. Recall that the bias error components

are assumed to be independent (see paragraph 4.3.2.2. a) so that the totaI

error figures quoted in tabie 4-7 are the root sum square of the individual

contributors. (Statistical quantities refer to averages taken over the en-

semble of possible missions.)

It is pertinent to point out that the range and range-rate bias error compo-
nents are introduced into the computer simulation in such a manner as to

cause the control law to command less acceleration (aR) than that required if
sensor errors were not present. If the sign of 1_b is reversed, then the

spacecraft tends to approach the landing site more slowly, and a softer land-

ing results. Likewise reversing the sign of range bias causes the spacecraft

to arrive at a hover point a distance R b meters above the Ianding site. Proper

termination of engine thrust would likewise result in a softer landing. (If Rb

equals 0.61 meters [Z feet], anda R equals 1.31 meters/second 2 from the
hover point to touchdown, the terminal value of Y is -0.61 meters/second.

This is a softer touchdown than that shown in table 4-7 for the case Rb = 0.61
meters).

Using the numerical results given in tables 4-6 and 4-7, the touchdown

velocity standard deviations are computed for each sensor error level in the
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manner indicated by the following example performed with results correspond-
ing to the low sensor error level.

Touchdown velocity_= [(1(_ bias deviation)Z + (1crrandom deviation)Z] 1/z
Standard deviation /

= [(I.01) a + (0.723)Z] I/z

= _. 24 meters/ second

This represents the lavelocity deviation. The 99 percent confidence level

is 2.5 times the lo deviation, which is 3.08 meters per second for the sample

case. The total touchdown velocity error is 3.46 meters per second when the

0. 381 meter-per-second error contributed by dynamic lag is included.

(Dynamic lag errors are not statistical in nature and thus are added directly

to the 99 percent confidence level.) Maximum touchdown velocities with a 99

percent confidence level for all three sensor error levels are summarized in

table 4-10. These results indicate that rather stringent accuracy require-

ments will be imposed upon the sensors if the MPN/VT-B guidance concept

is used all the way to the touchdown point.

A possible way to overcome this difficulty is to use the MPN/VT guidance

concept to arrive at a hover point above the desired landing site and to devise

a separate guidance concept (likely to be manual for manned missions) for the
hover-to-touchdown maneuver. The penalties to be paid for this capability

are a slightly increased fuel requirement and possibly a more complex

guidance and control system.

Table 4-10 shows the effect of sensor bias error components and engine

dynamic lag upon total fuel consumption. In all cases the fuel usage figure has

been adjusted, in the event that a hard landing is indicated, by the magnitude

of _r; that is, if AV is 1800 meters/per second to the point Y = 0 with Y at the

corresponding time equal to -15 meters/per second, then the AV recorded in

table 4-9 is 1815 meters/per second. The digital simulation program is run

once for each bias error level listed in table 4-9.

b. Sensor Dynamic Range Requirements. - If it is necessary to obtain
relative measurements from the spacecraft to the landing site prior to the

time of landing-engine ignition to avoid gross errors in the initial conditions

for descent, the navigation sensor system must be able to acquire the landing

site beacon prior to reaching periselenum of the synchronous descent orbit.

Since the nominal range from periselenum to the landing site depends on the

initial thrust-to-maas ratio, the acquisition range requirement is also a

function of this quantity. For the nominal case investigated herein (peri-

selenum altitude equals 38.1 kilometers or lZS, 000 feet, line-of-sight range

at periselenum is approximately 300 kilometers (106 feet). Consequently

the sensor is to be capable of 99 percent probability of acquisition at approx-

imately a 300-kilometer range.
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TABLE 4-8

TOUCHDOWN ERRORS CAUSED BY ENGINE LAG

Engine

Dynamic Lag
T

0 (no lag)

1 second

2 second

Touchdown Errors

(m/sec)

0

0. 762

0. 381

X (m) i (m/sec)

TABLE 4- 9

EFFECT OF SENSOR BIAS ERRORS AND ENGINE LAGS ON FUEL

CONSUMPTION. (AS MEASURED BY THE PARAMETER &V.)

Sensor Bias Errors (io) or Engine Lay

= 0. 305 + 0. 002 R (m)

= 0.61 + 0.005 R (m)

= 3. 05 + 0.02 R (m)

Nominal: no error, no lag

Dynamic Lag: T = 2 sec

R

Range bias: R b + RPb (l-_0)

R

Range bias: R b + Rp b (1-_0)

R

Range bias: R b + Rp b (i-_0)

Range Rate bias:

Range Rate bi.as:

Range Rate bias:

Angle bias: _b +

Angle bias: _b

Angle Rate bias:

Angle Rate bias:

1_b + l_Pb (1-_)= O. 0305 + O. 0005 i_ (m/sec)

F'b + f_Pb (1-_) = O.lSZ + O.OOZ_, (m/sec)

_'b + _,Pb (1-_0)= O.61 + O.OOS_ (m/sec)
g

_.Pb (1-_0) = O. 00003 + 0 (rad)

g
+_g Pb (1-_0) = 0. I + 0 (rad)

_L b +6pb-, iT6-61 = 0.00003 + 0 ,_.__II±_ I SeCl

hb ÷ a Pb (lh--_)= O.0001 + 0 (raa/sec)

Total AV Required,

(mps)

Periselenum to

Touchdown

1871

1874

1873

1874

187Z

1874

1875

1874

1875

187Z

!875

1878
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'Fable 4-11 indicates tile sensor dynamic range requirements for navigation

and guidance from periselenum to touchdown for the nominal trajec'tory.

TABI_E 4- 1 1

SENSOR DYNAMIC RANGE REQUIREMENTS

Observable

Range

Range rate

LOS Angle _',_

LOS Angle rate

-'b"

Dynamic Range

High

300 km

Z000m/sec

120 deg

50mr/sec

Low

0 km

0m/sec

0 deg

0mr/sec

This depends upon the method of LOS angle

determination over the horizon.

4.3.2.4 Conclusions

Results and conclusions drawn from the preceding effort are summarized

in the following statements.

0 A combination of two proportional navigation guidance laws provides a

guidance concept which approaches an optimum fuel trajectory over most

of the flight and then makes a vertical approach to touchdown.

Terminal vertical velocity errors are significant for all three assumed

levels of sensor capability. Terminal vertical position and horizontal

position and velocity errors are not critical even at the high sensor

error level assumed.

The most significant random error contributions to the terminal velocity

error are range observation and line-of-sight angle rate observation.

This suggests the use of low error level sensors for these observations

and higher error level sensors for the remaining observables.

Sensor bias errors contribute significantly to the terminal velocity error

at all three assumed levels and must be kept as low as possible. Bias

errors in the observation of range and range rate are the most critical.

The increase in fuel consumption caused by engine lag and sensor bias

errors is not particularly significant. If the largest increases for each

error source in table 4-9 are added directly (this is pessimistic), the

total increase in AV is 21 meters/per second or approximately 1 percent

of the nominal AV requirement.
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4.4 COMPARATIVE DISCUSSION OF GUIDANCE CONCEPTS

This final subsection is a comparative discussion of the two lunar landing

guidance concepts analysed: linear predictive guidance, and modified propor-

tional navigation with vertical touchdown capability.

Direct comparison of the two system models is not possible in many areas,

because of differences in system parameters and analytical constraints; e.g.,

initial mass and engine size constraints. As a result, the material presented

in this subsection is restricted to a comparison of nominal fuel consumption

(as indicated by the quantity AV) and a comparison of mean squared terminal

errors resulting when identical navigation sensors and sensor accuracies are

assumed. In addition, brief consideration is given to the relative computational

requirements and sensor dynamic range requirements of the two approaches.

4.4. 1 Nominal Fuel Consumption.

The basis for comparison of fuel consumption is the curves of nominal Z_V

required to complete the nominal descent maneuver as a function of nominal

initial altitude presented in figure 4-2Z. Curves are illustrated for the linear

predictive guidance gravity-turn trajectory (LPG), a modified proportional

navigation trajectory with no vertical touchdown provision (MPN), a modified

proportional navigation trajectory with vertical touchdown (MPN/VT-B), and

the optimum trajectory derived in subsection I. Z of Appendix D (Volume V).

The MPN/VT-B curve is estimated on the basis of one point and comparison

with the MPN curve and so is probably somewhat in error. However, the

general form is believed to be correct. The LPG curve is based on a specific

impulse of 400 seconds and terminal point 500 meters above the lunar surface.

All other curves use a specific impulse of 4Z0 seconds and 0 terminal altitude.

To provide a better basis for comparison, an estimated LPG curve is

developed for 420 seconds specific impulse and zero terminal altitude. This

estimated curve along with the MPN curves and the optimum characteristic

are shown in figure 4-23. The LPG curve is corrected to zero terminal

altitude by subtracting 500 meters (nominal hover altitude) from the initial

altitude axis in figure 4-22. Thus the AV figure at 20.0 kilometers originally

corresponds to 19.5 kilometers in figure 4-23. This is the curve labeled

"LPG, zero terminal altitude, Isp = 400 sec." From this curve the zero

altitude 420-second-lsp curve is estimated by determining the sensitivity of

AV to a change in Isp for the constant-thrust gravity-turn LPG trajectory and

using this parameter to estimate the AV versus h curve for I = 4Z0 seconds.

Quantity o s p

I

S sp
AV
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Figure 4-22. Comparative AV Requirements
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Figure 4-Z3. Comparative Z_V Requirements (After Normalization)
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is defined to be tile sensitivity of &V to a change in I as determined from
the expression sp

S - (4-71)
ZkV C)(lsp) &V

where AV is given by the following expression for a constant thrust trajectory

f m 1

Z_V - Isp go in OTo tf (4-72)
m

o Isp go

Increasing specific impulse generally decreases the total amount of fuel

required to perform a given maneuver. With regard to a constant-thrust

landing trajectory this implies that the product T O tf must decrease as Isp

increases. (T o is the constant-thrust level, tf is the total time of flight,

and the product is directly proportional to actual fuel consumption.) The
determination of

I

S sp
_V

which follows is based on the assumption that the product (T O tf) is constant.
The value of

I

S sp
AV

resuiting is too high, but this is seen to be a pessimistic approximation in the

following sense. The gravity turn fuel consumption curve {LPG) shown in

figure 4-23 for Isp = 420 seconds is actually pessimistic. If the variations of

T o and tf with increasing Isp are considered, the actual value of AV corres-

ponding to a given initial altitude is lower than that shown. The equation for
I

S sp
Z_V

subject to the indicated approximation is

I T tf
S sp o

ZkV = 1 go Isp T tf m

( O) n(ojm° Isp go T_o tf
1Tl

o goIsp

(4 -73)

The change in AV resulting from a given change in specific impulse, 6(I p).is s
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I

sp AV 5 (isp)6(Av) = S v T-
sp

(4-74)

where all quantities are evaluated on the known curve. To illustrate, the

change in AV at h o = 19.5 kilometers is calculated. Parameters corresponding

to 19.5 kilometers on the I -equals-400-seconds curve in figure 4-Z3 are given
below, sp

T
o

tf

I
sp

AV

rn
o

go

The calculated value of

I

S sp
AV

is -0. Z75. Thus

= 48, Z12.5 newtons

= 344.3 seconds

= 400 seconds

= 1827.5 meters per second

= II, 340 kilograms

= 9,807 meters per second g

6(_v) = (-o.z75)(18z7.5) 61
400 sp

when 6(Isp) = 20 seconds, 6(AV) is seen to be -25.2 meters per second, and

the value of Z_V corresponding to ho equals 19.5 km is estimated to be 180Z

meters per second for a specific impulse of 420 seconds. Repeating this

process at other values of h o yields the curve shown in figure 4-Z3.

It can be seen that the estimated gravity turn AV requirement curve is be-

low the optimum curve for h less than 29 kilometers. Thus there seems to be
o

a contradiction. Actually no contradiction exists. The optimum curve is only

optimum for the set of constraints under which it is generated (minimum time

trajectory from a given initial altitude using a given constant-thrust level).

The gravity-turn trajectory is derived using a different set of constraints,

so that it is quite reasonable that differing and perhaps less stringent Z_V

requirements result. Note that the slopes of these two curves differ signif-

icantly also.

This subsection compares the two types of nominal trajectories on the

basis of information generated during the course of study. Information

presented shows that the gravity turn offers a somewhat more economical

landing at low altitudes, whereas this advantage decreases and eventually

reverses sign as the nominal initial altitude increases. Perhaps the most

important conclusion to be drawn, though, is that caution must be used when

I

I

el

I

I
I

I
I

I
I

I

I
I
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the word optimum is applied to a landing maneuver. One must always include

the assumptions and restrictions under which optimization is performed.

4.4. 2 Comparison of Terminal Errors

In this paragraph the terminal error characteristics of the two navigation
and guidance concepts are compared when identical random error characteristic

are present at the input. Only random error effects are compared because

no bias error information is available for the linear predictive guidance
system. Table 4-1Z contains this comparative information. The assumed

rms navigation sensor errors are in the second column. The individual

components of the mean squared terminal errors are generated by using the
sensitivity coefficients presented in paragraphs 4.3. 1.3 and 4.3. Z. 3

respectively. The H-8 guidance mode is selected so that the same observables

are used in each system. It is not possible to use the same initial altitude for

the two systems. However, rough extrapolation of results obtained for linear

predictive guidance to the 38.1-kilometer initial altitude used by the MPN/VT
guidance concept shows that the total mean squared errors would differ from

those presented in table 4-12 for ho = 30 kilometers by only a slight amount.

It is important to recall that the linear predictive guidance error estimates

are upper limits and are therefore pessimistic. Results corresponding to

modified proportional navigation guidance are obtained from linearized analysis

of the actual closed loop system and cannot be called either optimistic or

pessimistic. Comparatively the rms terminal altitude and velocity errors

corresponding to linear predictive guidance are smaller {particularly velocity).

This is particularly interesting since error estimates using linear predictive
guidance are known to be pessimistic.

Horizontal position errors are apparently much smaller with MPN/VT-B

guidance, although this cannot be stated positively because of the pessimistic
nature of LPG error estimates. In any event neither estimate of horizontal

deviations is significantly large. Horizontal position error estimates for linear

predic'tive guidance are obtained by multiplying mean squared central angle
errors by the square of mean lunar radius.

4.4.3 Onboard Computation

Consideration of *_,,e._oI=*_-,_,..._...__h_a_d...... computational requirements of the two

guidance concepts is not really within the scope of this study. However, a few

general remarks can be made on the basis of basic characteristics of the

guidance systems.

Perhaps the most obvious computational difference between linear pre-

dictive guidance and modified proportional navigation is the reference trajectory
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information required by the former. There are several ways of making this
reference data available:

• Precomputation of reference trajectory and storage of trajectory data in

tabular or analog form

• Storage of reference initial conditions and the equations of motion

reference trajectory computed on board by integration (storage requirements

reduced compared to previous method)

• Precomputation of reference trajectory and approximation of state

variable time functions by low order polynominals (This approach offers

reduced storage requirements without necessitating integration. Some in-

accuracy is introduced, but this can be kept to a minimum by careful selec-

tion of the approximating functions).

The modified proportional navigation guidance concept does not require

reference trajectory knowledge on board the landing vehicle.

If both concepts use the same observables and the same state variables,

the navigational computations required are identical. It is obvious from

paragraph 4.3. g. I. b that navigation computations can be minimized by

making the state variables and observables identical.

In general each of the guidance concepts can use time-varying gain param-

eters in the guidance equations. When this is the case, the time functions

must be stored in the onboard computer. Of the two specific concepts con-

sidered herein, linear predictive guidance requires considerably more storage

capacity for gain p__rameters. No special effort has been made to reduce this

requirement with respect to linear predictive guidance. It is very likely that

investigation into the nature of the linear predictive guidance gain parameters

will reveal that good system performance characteristics can be maintained

when these parameters are approximated by simple time functions (perhaps

constants in some cases), thereby reducing onboard computation requirements.

Overall, the linear predictive guidance concept is expected to require grea-

ter onboard computer capacity, primarily because of the need to store ref-

erence trajectory data.

4.4.4 Sensor Dynamic Range

If the two systems use the same combination of sensors, the sensor dynamic

range requirements are identicalfor all practicalpurposes. This is deter-

mined primarily by the overall similarity of the mission profiles assumed for

analysis of linear predictive guidance and modified proportional navigation.

Typical dynamic range requirements are given in table 4-11.
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5. LUNAR ASCENT PHASE

5. I INTRODUCTION

This section deals with the ascent phase of the lunar mission. Specifically

this study is concerned with determining the feasibility of a given guidance

system and specifying the requirements for sensors used during the boost

phase of the lunar ascent to rendezvous. Only conventional guidance schemes

are considered and these are evaluated only to the extent necessary to establish

sensor requirements.

The sensor requirements are determined on the basis of errors associated

with position and velocity prediction. This requires the selection of a navi-

gation method and a specific system configuration. Actual hardware in terms

of types and numbers must be named.

For a mission of this type, it is desirable to specify the minimum accu-

racies required of the sensors. The choice of a guidance system can be made

somewhat arbitrarily by selecting very accurate sensors and a computer with

comparable accuracy; however, very accurate sensors and the attendant sup-

porting equipment plus a computer which has computational capabilities that

are greater than needed entails a severe system weight penalty. Any weight

puL iiito v_--_';+_,,__.v_'_v... eh_....... rnnnn must initially start from earth, be put into an

earth orbit, than a lunar orbit, and then landed on the lunar surface. By

specifying minimum sensor requirements, the initial cost and weight penalty

are kept to a minimum. The accuracy of the sensors and the weight of the

system together with the type of ascent trajectory selected are principal

factors which determine fuel requirements.

The scope of this portion of the lunar mission study is to determine the

sensors required for two different types of ascents - a parking and a direct

ascent. Each type has its advantages. This study does not rule out either

ascent in favor of the other since such a choice must take into consideration

factors other than sensor accuracies.
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The following is a glossary of notations used in this section.

O

X, y, Z

(i

H

=GM
G

M

T

m

R

A, A
x z

,(t)

Ah

Av

Cf
AS

Ay

Ar

AVr

AV T

AV N

dl 1' dig .... d66

Aax' y' z

ani

n

i

Cx, y, z
bni
n

i

Cxy

Cxy(0),Cx (0),
e , e , e

x y z
Pij' qij

Cyz(0)

standard deviation

navigational coordinate s

angle of inclination between two orbital planes

specific angular momentum

gravitational constant of moon

universal gravitational constant
mass of moon

rocket thrust

mass of vehicle

radial distance from lunar center to vehicle

thrust acceleration components

thrust inclination With respect to z-x plane in

navigational reference

position error of vehicle

velocity error of vehicle

central angle traversed during boost

vehicle position error along trajectory

vehicle position error normal to orbit plane

vehicle position error radial to orbit plane

radial velocity error of vehicle

tangential velocity error of vehicle

normal velocity error of vehicle

elements of transfer matrix

acceleration error components

accelerometer error coefficients where

O, 1, 2 ....... 7

x, y, Z

gyro angular velocity error

gyro error coefficients where

O, I, Z, 3

x, y, Z

platform misalignment error

initial platform misalignment

platform servo error

platform deformation where i and j take on

cyclical values of x, y, z

5. Z BACKGROUND

This portion of the lunar mission makes use of the Apollo vehicle parameters

when required even though the present study is for post-Apollo missions.

This allows the use of an existing vehicle design rather than attempting to pre-

dict the design of a post-Apollo vehicle. The physical configuration of the

vehicle has no direct bearing on the choice of the guidance schemes or sensors.
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However, the lunar ascent employs an optimized boost trajectory which re-
quires the use of certain performance parameters. The choice of the Apollo
vehicle is also in keeping with the rest of the lunar mission.

No attempt is made to consider all possible guidance schemes since such
a task would involve more time and effort than the present study allows. Cer-
tain simplified guidance schemes depend heavily upon the human operator
performing in an alien environment under relatively unknown circumstances.
Consequently, the choice of a guidance scheme is conservative and is based
upon "true and tried" techniques.

5. Z. i Description of Problem

A description of the lunar ascent includes the launch site, the trajectory

kinematics, and the terminal target conditions. The launch site description

consists primarily of approximating the error expectation which will be en-

countered. The ascent trajectory kinematics are influenced by the type of

boost trajectory and the type of ascent chosen. The types of ascents are

categorized as minimum time, minimum energy, parking, and direct.

The orbit of the target vehicle is assumed to be circular at an altitude of

Z00 kilometers. The ascent-to-rendezvous maneuver consists of launching at

a predetermined time to attain a prescribed kinematic juxtaposition of space,

time, and velocity.

The overall sensor selection is influenced by the type of guidance scheme

chosen, the trajectory kinematics, the error expectation at the launch site,

the vehicle performance parameters, and the terminal target kinematic con-

ditions. The actual sensor specifications are based on the errors associated

with position and velocity prediction. The ascents are optimized with respect

to fuel to achieve rendezvous for a set of prescribed conditions and mission

constraints. For example, a minimum time ascent requires maximum fuel

expenditure; however, fuel requirements are held to a minimum for this par-

ticular type of ascent by employing an optimized boost trajectory.

5. 2. 2 Definition and Comparison of Parking and Direct Ascents

Two methods of ascent are considered from the lunar surface to terminal

-1-" .... J_ .......... . .rendezvous, a ulreuL ascent and a parl_ing _cent. Both types of ascents

employ an optimum boost trajectory consistent with the minimum fuel con-

straint. The target vehicle is assumed to be in a circular orbit at an altitude

of 200 kilometers above the mean lunar surface.
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The following definitions are adopted:

a. Direct ascent: Two types of direct ascents are considered. (1) A

minimum energy ascent characterized by a powered boost phase from launch

to an intermediate 30-kilometer orbit followed by a Hohmann orbit coast phase

which terminates at target acquisition. (2) A minimum time ascent charac-

terized by a powered boost trajectory from launch to final target acquisition.

(See figure 5- 1. )

b. Parking ascent: A powered boost phase yielding an intermediate

circular orbit which after an arbitrary time delay may be followed by injection

into a transfer orbit which terminates in target acquisition. (See figure 5-2.)

The minimum energy ascent should be qualified. Theoretically, such a

mission would be accomplished by thrusting tangentially at the launch site to

attain the required velocity to achieve a Hohmann transfer to terminal rendez-

vous. Such an ascent is not possible nor practical to try to approximate. The

thrust cutoff at 30 kilometers facilitates terrain avoidance and the safety of

the mission. The minimum time ascent should also be qualified since such

an ascent is minimum time only within the mission constraints. The ascent

time can be reduced further by the expenditure of additional fuel.

The intermediate orbits are assumed to be concentric and coplanar with

the target orbit for both types of ascents. A nominal 30-kilometer orbit is

chosen for both ascents to tie in with the analysis of the rendezvous portion

of the lunar mission.

The minimum energ Y (short boost) and minimum time (long boost) ascents

are chosen in order to give an upper and lower bound on the class of direct

ascent trajectories. The sensor accuracies are determined for both ascent

trajectories.

Two different intermediate orbits at nominal heights of 30 and 150 kilometers

are chosen for the parking ascent to rendezvous. Both intermediate orbits

have higher angular rates than the target at 200 kilometers with the conse-

quence that the interceptor can adjust its angular position relative to the tar-

get vehicle prior to injection into an elliptic transfer orbit. The parking orbit

thus allows extra time between boost and the final transfer maneuver.

The boost phase of the direct ascent requires minimal timing errors prior

to launch and during the thrust period. Any timing deviations at the cutoff

point must be made up by fuel expenditure some time during the transfer orbit.
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Figure 5-I. Direct As cent to Rendezvous

For a typical lunar rendezvous with a low altitude target orbit, the orbital

velocity is approximately i. 6 km/sec. Hence, a countdown delay of a few

tenths of a second can result in a miss distance of a several tenths of a kilo-

meter if uncorrected. Should there be insufficient fuel to compensate for

this delay, the only choice with a _assive target is to delay the launch until

the target has completed another orbit.
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Figure 5-2. Parking Ascent to Rendezvous

A comparison of both ascents indicates that, neglecting launch delays and

the flight times, the nominal fuel consumption is very nearly the same if the

thrust cutoff altitudes are the same. Regardless of the method selected many

techniques and equations are common to both especially when an optimized

boost trajectory is employed. If the additional fuel requirement is less im-

portant than that needed for a quick rendezvous time, then the direct ascent
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is indicated. On the other hand, the parking orbit facilitates launch at all

tinges during the exploration period. Operationally, this is a distinct advan-

tage if an abort situation should arise. It should be noted that the time in the

parking orbit can be made any length desired as long as the period of the tar-

get orbit and the relative positions of the two vehicles are compatible.

It is not to be assumed that the sensor requirements of one ascent are

necessarily more stringent than the other. It is difficult to recommend either

ascent on the basis of the required sensor accuracies. The mission con-

straints and the conditions which develop during the mission could be the

decisive factors.

The relative advantages and disadvantages of the two types of ascents are
listed below:

a. Launch delays are more critical for direct ascent.

b. Errors committed prior to injection into the coast phase could cause

a direct ascent to be converted into a parking ascent.

c. Direct ascent does not handle out-of-plane launches as easily as the

parking ascent.

d. Direct ascent requires less restarting of rocket engines.

e. Direct ascent can require more fuel.

f. Parking ascent requires more time.

g. Parking ascent allo_vs extra time between boost and injection phase

to compensate for launch delays.

h. Long periods in parking orbit will require more life support equip-
ment.

i. Parking ascent requires more accurate sensors if position is not

updated.

5. 2.3 Assumptions

The following assumptions were used:

a. The vehicle is assumed to be capable of constant thrust during the

boast phase.

b. Thrust can be terminated when required during the boost phase and

restarted when required.

c. The vehicle has a self-contained inertial guidance system.

d. The target vehicle is assumed passive during the ascent; however,

both vehicles can communicate with each other.

e. The observables at launch are direction and magnitude of the gravity
vector and time.

f. The observables during flight are linear acceleration, angular dis-

placement, and time.

g. The target vehicle has the capability of determining its orbital

parameters.
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h. The lunar parameters are

r = 1738 km - mean radius of the moon,
m

= 4.9 x 103 km3/sec Z -_ GM where G is the gravitational constant

and M is the mass of the moon.

i. The target orbit is assumed circular with a 200-km altitude.

5.3 ANALYSIS

5. 3. 1 Background Analysis

5. 3. I. 1 Selection of Navigation System

The direct ascent consists of a powered boost and a ballistic trajectory

which terminates at the target vehicle. The parking ascent is similar with

the difference being the parking orbit phase of the mission. Both trajectories

suggest the use of ballistic missile guidance techniques. The ballistic tra-

jectory of a missile is established when the required position, velocity, and

direction of the velocity vector are established at thrust termination. The

errors at the target, ignoring gravitational anomalies and atmospheric effects

at the target (which do not exist in a lunar atmosphere), are a function of the

errors in position, velocity, and attitude at thrust termination.

The choice of a means of navigating from the launch site to terminal ren-

dezvous becomes apparent. The experience with inertial systems in ballistic

missiles is quite extensive. Very accurate systems in varying stages of com-

plexity are available as off-the-shelf-items. Such a system offers a method

capable of furnishing all the elements required for guidance in a self-contained

unit requiring only inertial quantities and time.

An inertial system is chosen for this study. The sensor accuracies are

based on the boost phase of the ascent and the permissible errors at thrust

te rmination.

5. 3. I. 2 Error Criterion

To conduct an error analysis, some standard must be set up as a reference

upon which to base the final results. This standard is the allowable error in

position and velocity that can be tolerated at the initiation of the Hohrnann

transfer coast phase from a nominal 30-kilometer parking orbit. The assump-

tion is arbitrarily made that a 3-a error in any one injection parameter will

not result in more than a Z0 percent increase in fuel consumption over the

nominal case (zero error) utilizing the.Hohmann orbit transfer. The fuel

consumption for the nominal case denotes the total fuel required for injection

into the Hohmann transfer ellipse and synchronization at the target orbit. The

3-g errors in position and velocity are:
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Ah = 1. 4 kilometers (3 o value)

AV = 1. 5 meters/sec {3 o value)

The errors are extracted from table 1 of Appendix 1i" (V()lumc V).

The error analysis for the sensors is based on the short boost trajectory

for both direct and parking ascents since the error criterion is specified for

that altitude. The same error coefficients are used in conjunction with the

long boost acceleration profiles for the sensor specifications associated with

the long boost.

5.3. 1.3 Trajectory Determination

a. Ascent Trajectory Selection and Subphases - The ascent trajectory

is initiated at launch and ends with terminal rendezvous at the target vehicle.

The ascent is considered in two separate classes for purposes of this study,

a direct and a parking ascent.

For the direct ascent, two trajectories have been chosen. A powered ascent

from launch terminating at target acquisition using an optimized boost tra-

jectory accomplishes rendezvous in a minimum time and, consequently, with

a maximum fuel expenditure. An alternate ascent course is a minimum energy

trajectory which becomes a maximum time for the direct ascent. The mini-

mum energy ascent is accomplished by a powered boost from launch to a 30-

kilometer nominal orbit from which a Hohmann transfer is initiated directly

to attain terminal rendezvous. The range angle for this ascent after thrust

cutoff is 180 dsgrees. See figure 5-1. These two ascents represent a maxi-

mum and minimum energy bound for the direct ascent trajectories.

The parking ascent is very similar to the minimum energy direct ascent.

The parking ascent is initiated using a powered boost from launch to some

intermediate orbit from which, after a prescribed coast time, the launch

vehicle is injected into an elliptic transfer orbit which terminates at the tar-

get vehicle. Two parking ascents have been considered, a short boost from

launch to a nominal 30-kilometer altitude and a long boost to a 150-kilometer

altitude. These two altitudes bracket a family of parking ascent trajectories.

The 30-kilometer orbit gives a close comparison with the direct ascent to the

same altitude. Ascent above the nominal 150-kilometer altitude might as

well be accomplished by the direct ascent route.

All ascents use an optimized boost phase. A vertical boost height of I. 5

kilometers is used for all launches for terrain avoidance. For purposes of

this study, the range angle will be. defined as the angle measured from the

point of injection at the initiation of the coast phase to the point of terminal

rendezvous. The maximum range considered is 180 degrees foY a Hohmann

transfer. For determining the sensor specifications, range angles less than

180 degrees are not considered although for the actual ascent mission different
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range angles could be included in the guidance computer to give flexibility to

the ascent trajectory. If the range angle is less than 57 degrees a failure of

the rocket at terminal rendezvous would result in an intersection of the orbit

and the lunar surface with obvious disastrous results.

b. Launch Site Definition - For determination of sensor requirements,

the boost trajectory is considered as a two-dimensional problem. This as-

sumption affords an analytical simplification and does not detract from the

basic problem. Consequently, the launch site, the boost trajectory, and the

target lie in the same plane.

Under actual conditions, errors in establishing the target orbit and uncer-

tainties of the spin axis of the moon will result in a launch site that is not

located in the orbit plane with the result that an out-of-plane ascent must be

made. For such considerations, when thrust is applied normal to the orbiting

plane, the resulting motion will be a combination of precession of the nodes and

a change in the orbit inclination. When a velocity increment is applied normal

to the orbit at some point remote from the nodes of the existing and desired

orbit, the maneuver will be inefficient since part of the fuel expended will

cause a precession of the nodes rather than a change of the orbit plane. The

change in inclination between the existing orbit and the desired orbit is given

by(Ref. 5-1, Chapter Z):

_&CL = --r_v

H

where

_v

H

r

_a

= the velocity increment normal to the orbit plane

= the specific angular momentum of the orbiting vehicle

= radius of the orbit

= angle of inclination between the existing and the desired orbit.

The above equation is for the case where the thrust is at the line of nodes.

It can be seen that Aa varies inversely as the specific angular momentum.

This would imply that for the direct ascent any changes in the launch plane be

made from as low an altitude as possible to conserve fuel.

c. Boost Trajectory - For launch from a planetary body into an orbit,

the usual technique consists of a short vertical takeoff followed by a gravity

turn phase. For boost trajectories from the lunar surface where no atmos-

phere exists, the heating and bending from aerodynamic loads are not present

with the consequence that an optimized boost may be employed starting at

takeoff.
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The equations of nmtion for an airless ascent arc:

°.

x+

z +

where

bLx T

R 3 - M cos _ = A x

btz T
- sin _ = A

R 3 M z

G

M

T/m

m

= GM = 4. 900 x l03 krn3/sec2-

= universal gravitational constant

= mass of the moon

= thrust to mass ratio

= mass of the vehicle

A , A = thrust acceleration along x and z axes.
X Z

The quantities T/m and _ are functions of time and the trajectory depends on

how they vary. If T/m is assumed a known function of time, the problem be-

comes one of selecting _(t) for a maximum tangential velocity at a specified

altitude. These equations assume no gravity anomalies and are based on a

two dimensional analytical model. The geometry of the problem is shown

in figures 5-3 and 5-4.

VELOCITY VECTOR

///

//

x

1750C-VA-45

Figure 5-3. Optimum Boost Geometry
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Figure 5-4. Geometry of Boost Trajectory

It should be noted that an analytical solution of the nonlinear simultaneous

equations 5-I and 5-Z is not known. The constraint requiring a maximum

tangential velocity at a specific altitude results in a linear tangent relation,

tan %5= tan d_° bt. (5-3)

Equation 5-3 defines _ as a function of time, t, and maximizes the mass in

orbit. An approximate solution using the linear tangent relationship is given

by MacKay (Ref. 5-2). The assumptions are:

a. R is constant during boost

b. T is constant

c. m is a known function of time, defined by equation 5-4.

m = m + rnt = mass of vehicle at time t (5-4)
o

where

m = initial mass of the vehicle
o

rn = time derivative of mass

Burley and Weber (Ref. 5-3), using a calculus of variations computer pro-

gram, have obtained optimized lunar boost trajectories. Curves for optimum

T/W (W is lunar surface weight: mgm), and characteristic velocity versus
o o

altitude are shown in figure 5-5. The optimized boost parameters are listed

in table 5-i. The thrust accelerations A x and A z versus time are plotted in

figures 5-6 and 5-7 for the direct and parking ascents respectively.

5-12



o
E

o

I-

3

I-
0.
O

3

i
0

I I I I I I

30 60 90 I20 150 i80

I-

2.4
_z

J(n 2.1

l--
L)
,<
n_

T
L)

1.5
0

- t: 7.9 MIN.

_f:8.6 °

f:4.2

_f= 6.1 °
2- IMPULSE BOOST

I I I I I I
30 60 90 120 150 180

CIRCULAR ORBIT ALTITUDE,'_ K M

_6fzCENTRAL ANGLE TRAVERSED DURING BOOST
1316A:VB- 45

Figure 5-5. Constant Thrust Optimized Lunar Ascent

It should be noted that the linear tangent relationship is derived from the

conditions imposed on the boost equations requiring an optimum ascent and

does not influence the choice of a guidance system. The linear tangent relation

does influence the shape of the thrust acceleration profiles which in turn are

used to determine the miss velocity and miss distance coefficients in the

error analysis section.
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d. Target Definition - The target vehicle is assumed to be in a circular

orbit at a height of 200 kilometers above the mean lunar surface. Conse-

quently, only two parame_,ers, the constant _ and the circular radius r, are

needed to define the target trajectory. Since the value of _ is known prior to

the lunar mission, only r need be determined from the orbiting vehicle under

the assumptions used for this study.

For the problem of defining minimum sensor requirements, little is gained

by varying the other orbital parameters. Under actual conditions, the target

vehicle is expected to be in a nearly circular, equatorial orbit.
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5.3. 1.4 Guidance Scheme

a. Boost Sensors and Observables - 'fh_' specification of s,:nsors must

bc preceded by the selection of the guidance to be used during the boost portior,

of the hmar ascent. A generalized analysis of the errors associated with the"

ascent trajectory without specifying the guidance system and sensors is not

enough. As previously mentioned, the choice of inertial guidance is indicated

by the salient features of the ascent trajectory plus the advantages that such a

system has.

Functionally, the inertial system consists of a set of gyros, accelerometers

and integrators, a gravity computer, a clock, and anavigation computer. The

integrators, gravity computer, clock and navigational computer are all con-

sidered as part of the computer.

The observables at launch are the magnitude and direction of the gravity

vector and time which may be used to determine the launch position coordinates.

During flight, the observables are inertialacceleration, angular displacement,
and time.

b. Guidance Mechanization - Guidance navigation for the lunar ascent is

performed in a nonrotating reference frame located at the moon's center. The

assumption that such a reference frame is equivalent to an inertial reference is

reasonable since the orbital motion of the moon relative to the sun and earth

does not induce any measurable errors into the guidance system during ascent.

Position and velocity within the navigational reference frame are obtained from

three orthogonally oriented accelerometers mounted on a gyro-stabilized plat-

form. Orientation of the platform is provided by three single-degree-of-free-

dom gyros; however, two two-degree-of-freedom gyros can perform equally

well. The present state of the art is to use rate-integrating gyros rather

than the straight rate sensing instruments. The error analysis technique em-

ployed does not differentiate between the two types. The mechanization chosen

is referred to as a three-axis space-stabilized inertial system.

Either an analog or digital computer can be used with an inertial guidance

system. Errors associated with analog computation in inertial systems are

larger than for digital computation. Digital computers have a much greater

accuracy potential which reduces many computational errors to negligible

quantities. Quite often, the more the computations, the more complex the

computer, and generally the bigger the con-,puter. Consequently, the reduction

in errors must be paid for in computer cost and weight.

The guidance system could conceivably be implemented along several differ-

ent lines. The system could be all inertial, a celestial system, a hybrid iner-

tial-celestial, or primarily a radar command or homing system. For the error

analysis, a definite system and a definite type of mechanization must be chosen.

The choice of inertial guidance was made on the basis that such a system is
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self-contained, that a large amount of experience has been gained with similar

systems used on ballistic missiles, and that stabilization of the vehicle would

be required regardless of the choice of the guidance system.

An alternate choice of inertial guidance, the gimballess system or strapped

down system, was ruled out. In such a system the accelerometers are not

fixed in the navigational coordinate system. Instead, they have a fixed

orientation along the axes of the vehicle with the consequence that their outputs

must be transformed along the navigational coordinate axes before relative

acceleration and position can be obtained. The transformation matrix which

replaces the isolation gimbals of the stable platform must be derived in a

computer from knowledge of the angular velocity of the vehicle relative to the

navigational coordinate system.

The gimballess system eliminates the weight and errors associated with

a stable platform; however, the major errors which predominate are in the

gyros. Gyro drift and gyro torqueing errors cause the reference trajectory to

change, thus causing the vehicle to follow the error trajectory rather than the

true trajectory. In the gimbaled system the gyros operate in a very narrow

linear range, whereas in a gimballess system the linear operating range for

the gyros is considerably greater. The size of the computer and the required

amount of computation is much greater for a gimballess system than for a

gimbaled platform system. As a consequence, the error sources and the

error analysis are different for the two systems.

c. Guidance Equations - The function of a guidance system is to gener-

ate a sequence of command signals which guide the vehicle and terminate

thrust in such a way that the guidance constraints are satisfied and the intended

mission accomplished. The intended mission may be accomplished without

satisfying all the guidance constraints and conversely. One does not imply the

other.

The sequence of command signals which steer the vehicle and terminate

its thrust for a given mission is based upon a comparison of inertially derived

position and velocity and desired position and velocity derived from a reference

trajectory. The generation of these command or error signals is accomplished

through the use of guidance equations. A guidance technique based on the re-

quired velocity concept is now generally used. The required velocity concept

is based on the fact that at any space-time point in the powered region the re-

quired velocity of the missile is a function of the present missile position and

the target parameters.

Two of the more common types of guidance equations are explicit guidance

equations and delta guidance equations. Both are based on the required ve-

locity concept. Explicit equations are rather complicated from a mechanization

viewpoint but require a minimum of precomputations. For delta equations the
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reverse is essentially true. Delta equations are essentially perturbation

equations. Both approaches are methods of approximation For the explicit

equations, the guidance model is simplified first and then exact equations are

written. For the perturbation or delta equations, a realistic guidance model

is first employed then approximate equations are obtained, usually by simu-

lation. Explicit equations require less precomputation but their complexity

generally requires a larger computer. Delta equations are simple to mechanize

and are inherently more flexible, since all guidance constraints can be changed

simply by changing the constraints. Either can be made to perform the same
task.

For the lunar ascent, the smaller size computer required and the greater

flexibility of the equations would indicate the choice of delta guidance equations.

The designations "delta guidance" or "explicit guidance" do not mean precise

mathematical formulations but rather approaches. A variety of both types of

equations can be written.

It should be noted that the error analysis of this study is based on the choice

of a guidance system (inertial guidance) and a specific type of mechanization

(space stabilized platform). The choice of the guidance equations is independ-

ent of the error analysis. The commentary on guidance equations is included

here to indicate the boundaries of the error analysis in determining the sensor
errors.

5.3.2 Error Analysis

5.3.2. 1 Method of Approach

The method that is used in this discussion is to define an overall error

allowance for position and velocity. This error allowance is based on the

position and velocity errors which can be tolerated at the initiation of the

Hohmann transfer coast phase from the nominal 30-kilometer parking orbit.

This error allowance is extracted from table 1 of Appendix F (Volume V). This

allowance is defined on the basis that 3-_ error in any one injection parameter

shall not result in more than a 20 percent increase in fuel expended for a

nominal ascent (zero error ascent trajectory) to rendezvous. This error
allowance is

Ah = 1.4 kilometers (3 a value),

Av = 1. 5 meters/see (3 a value).

This overall error allowance may be composed of contributions from several

sources; however, for this study it is assumed to be comprised only of guid-

ance system errors and errors due to selenophysical uncertainties at the
launch site.
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The guidance system is arbitrarily allotted an overall error allowance.
These errors plus the selenophysical errors must be less than the total error
allowances set up as the standard. The overall errors in the guidance system
can be controlled by varying the sensor tolerances. All the error contributions
which exist in the guidance system are combined in an error budget. Each
error producing source must operate within a specified tolerance. If the error

in a given component contributes excessively to the overall error, the overall

guidance system error must be relaxed or a general tightening of the error

source must take place. The errors allotted in the budget must be within the

state of the art accuracy for each component.

Figure 5-8 shows the minimum energy direct ascent trajectory. The error

relationships are similar for the other ascents with the exception of the min-

imum time direct ascent which effects rendezvous at thrust termination.

5.3.2.2 Error Sources

The position and velocity errors of the launch vehicle that occur during the

lunar ascent originate from several sources. This discussion is primarily

concerned with the sensor errors; however, other error sources influence the

specifications of the sensors and must be considered.

THRUST TERMINATION

BOOST _/_-- "" "" "-, --- ...

PHASE _"'" "'"'_'"'_. _ COAST PHASE

J I k,.. NOMINAL _'_ _'_%_ TRANSFER

u.cH t E"

_,.D ,,.. ,,- UNCERTAINTY ERRORS TERMINAL

SELE NOPHYSICAL

UNCERTAINTIES RENDEZVOUS

1750C-VB-47

Figure 5-8, Ascent Trajectory

The error sources within the guidance system are:

a. Accelerometer errors

b. Gyro errors
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c. Alignment errors

d. Computer errors

Errors within the inertial guidance systems are only part of the total mission

errors since factors outside the guidance package also contribute to the total

error. The following are error sources not chargeable to the inertial system.

a. Thrust termination errors

b. Transfer errors

c. Selenophysical uncertainties

d. Target location errors and uncertainties

Accelerometer, gyro, and alignment errors cause more than 90 percent of

the total guidance system errors in most applications. When digital computers

are used in conjunction with a gimbaled platform, the accelerometer, gyro,

and alignment errors predominate to the extent that all errors associated with

the computer are neglected. Consequently, a discussion of computer errors

will not be included since the percentage of the error can be arbitrarily con-

trolled by the complexity of the computer. With the velocity control concept

of guidance, the ballistic trajectory of a vehicle can be determined if the

position, magnitude, and direction of the velocity vector are known at thrust

termination. Although the precise time of thrust cutoff can be generated by the

computer, the sequence of events in the cutoff process produces errors. This

generation is not chargeable to the inertial system. Within the present state

of the art of rocket propulsion systems, this error with respect to the inertial

system errors becomes of second order importance and will be neglected for

this discussion. The other error sources will be discussed in subsequent

sections.

5.3.2. 3 Boost Sensor Errors

The analytical formulation of the error analysis for the boost sensors is

given in Appendix E (Volume V). The following discussion summarizes the

method and provides the motivation for the particular choice of analysis. In

an inertial system the errors in position and velocity are initially manifested as

imperfections within the sensors plus orientation errors. The significant error

sources within the guidance package are listed below.

a.

Sensor

Accelerometers

b. Gyros

Error Sources

Bias

Linear scale factor

Cross axis effects

Nonlinear effects

Fixed drift rate

Mass unbalance

Anisoelasticity
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c. Platform Mis alignment
Servo error
Table deformation

Analytical models for the accelerometers, gyros, and platform errors
are formulated. These models furnish a mathematical definition of error
coefficients in terms of boost accelerations. The subsequent procedure in-
volves evaluating each term in the error model to determine its effect on
vehicle position and velocity at thrust termination. These error models for
each component indicate the mechanism by which each error source propagates
its respective errors.

An error budget is drawn up for the boost sensors which shows the contri-
bution of each error source to the final position and velocity error of the vehicle
at the end of the boost trajectory. The error coefficients are initially assigned
on a somewhat arbitrary basis. The governing criterion is that these coeffi-
cients should be within the present-day state of the art.

The error analysis must be done in terms of a specific mechanization. THe
particular mechanization for which the error coefficients are determined in this
study is a stable platform configuration containing three single-degree-of-free-

dom gyros orthogonally oriented and three accelerometers with their input axes

oriented along the reference axes determined by the gyros. If a different

mechanization is considered, such as a gimballess system, different error

models must be formulated. The orientation of the navigation reference frame

which is determined by the gyro orientation is shown in figure 5-9. The ref-

erence axes are moon-centered, nonrotating and constitute for the accuracies

of this study an inertial reference frame. The boost trajectory is in the x-z

plane.

There are three generalized error analysis procedures commonly used for

relating guidance component errors to the position and velocity errors at

thrust termination(Ref. 5-4).

The first procedure consists of using normalized integrals of the thrust

acceleration components in conjunction with error coefficients to formulate

error models for the various sensors. A slight modification of this method is

used for the error analysis in this study. Some of the various methods of

evaluating the error coefficient integrals are digital computer computation,

analytical hand integration, graphical integration, and a combination of graphi-

cal and hand integration in conjunction with polynominals. For a few nominal

trajectories this method is extremely useful and yields quick results.
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A second procedure consists of a special digital computer program for exact

integration of the error equations over the nominal boost trajectory using the

sensor error sources as forcing functions. Such a program can be used to ob-

tain results for a wide range and magnitude of error sources and is very use-

ful for extensive and detailed work. The procedure can be used to evaluate any

inertial measurement unit and is especially useful for optimization work. For

this particular study such a method involves too much computer work for the

information that is required.

The third procedure is a flight simulation program. This type of program

provides an accurate method for evaluating error coefficients; however, since

a complete flight is required to evaluate each error source, the method is

wasteful of computer time except for special cases.

The determination of many optimized trajectories is beyond the scope of

this study and not essential for determining the sensor specifications for the

lunar launch. For these reasons the first procedure previously described is

used in conjunction with two ascents each for the direct and parking ascents for

ascertaining the sensor requirements.

5.3.2.4 Transfer Errors

As previously discussed, two methods are available for achieving the final

phase of the lunar ascent after the powered phase. The vehicle may be either

injected directly into a Hohmann transfer ellipse after the powered phase or

enter a parking orbit and then be injected into a transfer ellipse. At thrust

termination there will be an accumulation of errors in position and velocity

caused by errors in the sensors within the guidance system and by seleno-

physical uncertainties at the launch site. Each initial error is propagated

along the coast portion of the trajectory and is ultimately manifested as the

final error at terminal rendezvous. These errors have secular and periodic

propagation characteristics. The cumulative errors which occur during the

coast phase are referred to collectively in this study as transfer errors and

are independent of the guidance system.

The errors at thrust termination are expressed in the rectangular coordi-

nates of the navigational reference frame. The position errors are transformed

to cylindrical coordinates by the following expression.

rso,rcoIEI yoJ= 0f01sio0f0
o =z

where:
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Of = tile central angle traversed during boost

AS = the error tangentially along the trajectory

Ay = the error normal to the orbital plane

Ar = the radial or cross-track error.

The velocity errors may be transformed by substituting the velocity cornl,o-

nents. It should be noted that all y-values are unchanged since rotation is

about the y-axis. The resulting errors are in the correct coordinates to be

transformed _or the coast phase.

The transfer error matrix will be given in the most general form which may

be used for any central angle traversed.

r

Z_r

r

_S

S

Y

_V
r

v Ir

AV

I
LvNJ

dll d12 d13 d

d21

d31

d41

d51

d61 d66

The matrix for the transfer errors is

m

Ar
16 o

r

o

Z_S
O

S
O

AY o

YO

AV
or

V
or

&VoT

VoT

AVoN

VoN

The elements of the matrix dll, dlg, - - - and the definition of the terms

are given in Appendix E (Volume V). It should be noted that this matrix may

be used on multipulse coast trajectories. The inputs to the matrix are still the

burnout errors at the end of each stage or firing and the output errors are at

the injection point or the end of each coast phase. The overall error on a

multipulse mission is the respective products of each coast phase. This sub-

ject is treated in more detail in Ref. 5-5.

5. 3. g. 5 Selenophysical Launch Site Uncertainties

The purpose of this paragraph of the lunar ascent study is to ascertain a

maximum error expectation in the navigation coordinates at the launch site.

These selenophysical uncertainties are three-dimensional position errors

which originate from the following sources.
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a. Errors in the lunar surface launch site location
b. Errors in determining the lunar radius
c. Local vertical uncertainties.

These error sources will be discussed in detail later.

One method of determining the error expectation is to make a comparison
of similar conditions on earth with what can be encountered on the moon. This
is not an easy task since the exact nature of the lunar surface is not known.
Most of the information on the physical characteristics of the moon is derived
through various types of observations of the lunar surface. Various parameters
such as the mass, the mean density, the principal radii of the observable por-
tion, and the gravitational constant are known. The density gradient within the
moon is not well known. The characteristics of the central core and the mean
density and nature of the lunar surface are open to conjecture. In general the
number of lunar theories is approximately equal to the number of theorists.

The task of navigating on the moon is in many respects easier than on earth.
Three factors enter into this consideration; the absence of an atmosphere, the
slower rotation, and the greater sphericity of the moon. The absence of an
atmosphere eliminates the usual problems associated with celestial sightings on
earth. There are no refraction corrections or delays from cloud coverage.

The synchronized rotation of the moon with its orbital rotation due to

the torque effect of the gravity gradient causes the effects of centripetal ac-

celeration on lunar gravity measurements to be insignificant.

The observed triaxial radii of the moon are:

R 1 = 1738.57 + 0.07 km (equatorial)

R 2 = 1738.21 ± 0.07 km (equatorial)

Rp= 1737.49 ± 0.07 km (polar)

The average equatorial radius is R = 1738.39 ± 0.07 kin.

the moon is

- Rp
= 5. 177 x 10 -4 .

The oblateness of

The oblateness of the earth is

1 10-3_ = 3.367x
297

or almost seven times greater than the lunar oblateness.
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z[ lie lunar oblateness discussion is only about the observed portion. The

same side of the moon always points in the earth's direction - apparently the

result of tidal effects between the two bodies earlier in history when the lunar

body was in a plastic state. The gravitational attraction probably caused the

moon to be distorted in the shape of an egg. The mechanism of obtaining this

distortion as purely conjecture; however, the synchronism of the lunar rotation

with the earth requires that the moon have a mass preponderance in the earth's

direction. I/ The amount of distortion is probably not more than a few hundred

meters at the most - which is small compared to the moon's diameter. Con-

sequently, the oblateness of the moon about any axis of its suspected triaxial

ellipsoidal shape will not differ appreciably from the oblateness determined

from the view presented to earth.

The main source of navigation errors of the lunar launch site is suspected

to originate from gravity anomalies. An estimation of gravity anomalies will

begin on earth. It has been known for many years that the observed values for

the deflection of the plumb line at certain locations on earth are considerably

less than the estimated values. This disparity has long been suspected to

originate from unequal densities of material immediately beneath the surface

or specifically, by regions of deficient density lying beneath the mountain

ranges and by regions of excessive density beneath low areas and under the

ocean bottom. It is supposed that at some depth the excess above the surface

is compensated by a deficiency below the surface and conversely.

If the earth were composed of homogeneous matter, its normal shape under

equilibrium conditions without strain would be a true spheriod of revolution;

however, if the earth's composition were heterogeneous, its shape would no

longer be spheriodal. Accumulations of lighter density material would tend

to bulge above the mean surface while heavier matter would tend to be de-

pressed or sink below the mean surface. This condition of equilibrium of the

earth's crust is called isostasy. There are several different isostatic

theories2/ which represent variations on a similar theme. The main interest

here is contrasting a maximum error in vertical measurement on earth with

a similar measurement on the lunar surface.

The determination of position is tied in closely with the local vertical es-

pecially if local reference points are not used. The maximum deflection of the

verticalon earth is 1 minute of arc. This vertical deflection causes an error

in surface measurement of one nautical mile or 1.85 kilometers. This same

angular deviation on the moon would result in an error in surface position of

0.5 kilometer. However, the vertical deflection on earth is altered by the

isostatic nature of its crust. It is highly probable that the lunar surface is not

in isostatic equilbrium. This conclusion is predicated on the estimated surface

and interior temperatures, the density, and the interior pressures of the moon.

1/ Ref. 5-6, p. 66 and 160.

2/ Ref. 5-7, Chap. 5
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The lunar mountains have heights that easily equal or exceed those on earth.
A direct comparison is not valid. The heights on earth are related to sea level.
Since the moon possesses no water and no sea level, the measured height of a
lunar mountain corresponds to its height above the surrounding surface. The
tallest earth mountains tend to be on plateaus or in a mountainous area, where-
as the lunar mountains may stand isolated. Based on the formation of the lunar
mountains and the fact that the moon does not have an isostatic crust, the
maximum deflection of the vertical could approach twice that on earth. For
these reasons the maximum vertical deflection on the moon is taken as Z
minutes of arc and the maximum position error as l kilometer.

The accelerometer accuracy of 2 x 10-5 g's allows the determination of the
lunar radius to within 100 meters. This accuracy is based upon the ideal con-
ditions of a spherical moon and a well-defined reference datum. The lunar
oblateness plus gravity anomalies compounded by the accelerometer accuracies
would increase the error in determining the lunar radius several times. For
these reasons the maximum lunar radius error is taken as 1 kilometer.

It is expected that prior to the lunar landing, the landing site including
reference land marks will have been chartered using high definition photographic
techniques from orbiting vehicles. On earth a 1:50,000 scale aerial photograph
allows the location of a point to within a few meters. It is not unreasonable to
expect similar accuracies on the moon. However, such considerations have
not been used in determining the sensor requirements in this study.

5. 3. Z. 6 Error Contributions From Lunar Radius and Launch Position
Unce rtainties

The error contributions at thrust termination from selenophysical uncer-
tainties at the launch site are obtained by using a differential error analysis
of the boost equations. This is equivalent to neglecting any effects or higher
order than first. Figure 5-10 shows the position error contribution at the
nominal 30 kilometer orbit from launch site errors in surface position and the
lunar radius. Figure 5-11 shows a similar error relationship, the velocity
error contribution at thrust termination at the 30-kilometer orbit from launch
site errors in surface position and the lunar radius. The errors are kept
separate in order to show the contribution from each source. The curves in
figures 5-I0 and 5-11 show no overwhelming contribution from any one source;
however, lunar radius uncertainties produce a greater error contribution at
thrust termination.

5.3.2.7 Launch Times

For direct ascent the time of launch must be very precise if a given ascent
trajectory is adhered to. The range of the trajectories considered in this study
vary from the direct ascent under thrust with its minimum time of 460 seconds
to the minimum energy ascent of 260 seconds powered boost plus half the period

5 -28



I-
F-

¥

F-

W

==
Q
I--

I000

900

800

700

6Oo

500

400

30O

200

I00

&R=O

i I A I l i i | j

I 2 3 4 5 6 7 8 9 10

LAUNCH SITE POSITION ERROR (METERSXIO0)

1400

1300

t_J
o 1200
::)
1-
_. iioo

_- 800

Too

_ 600
t_J

500
n-
O
fv 400

w
z 300
0

_" 200

0
o. I00

_1 I I t | t I ! 1

I 2 3 4 5 6 7 8 9

LAUNCH SiTE LUNAR RADIUS UNCERTAINTY

( METERS X I00 )
17_oc-v8-48

Figure 5-10. Position Errors at a 30-Kilometer Altitude Caused

by Launch Site Location Uncertainties



1.0

0.9 °

O.S"

0.7-
t_

"" I.-

_Z 0.4

o.3-
q_
W
> 0.2-

0.1

L_R,O

a I i a I I I I I I

I00 200 300 400 500 600 TO0 SO0 900 11300

LAUNCH SITE POSITION ERROR (METERS)

1.0

0.9-

O.S-
W
(/1

_ 0.6-

0.5-

i o 0.4.o_

O.Z

0.1
J POSITION ERROR

, _, _,,, _,I00 400 600 700 800 9 I000

LAUNCH SiTE LUNAR RAOIUS UNCERTAINTY (METERS)

r?50C - VB-49

Figure 5-11. Velocity Errors at a 30-Kilometer Altitude Caused by

Launch Site Location Uncertainties

5 -30



of the Hohmann transfer ellipse. These time extremes pertain to only one

period of the target vehicle. Delays in launching can be handled by changing

from a direct ascent to a parking ascent or by utilizing some intermediate

direct ascent trajectory lying between the minimum energy and minimum time

ascent considered in this study. A consideration of the tolerances on initial

launch times must also take into account out-of-plane launches and a consider-

ation of launch windows. As a consequence, a detailed discussion of launch

times and launch errors will not be considered in this study.

5.4 RESULTS

5.4. 1 Sensor Requirements for Lunar Ascent

The sensor errors determined in this study are based on an overall error

allowance in position and velocity at thrust termination prior to initiation of

the Hohmann transfer coast phase from the nominal 30-kilometer parking orbit.

This overall error allowance includes the guidance system errors and the er-

rors caused by selenophysical anomalies at the launch site. This error al-

lowance is based on a 3a error which can be permitted in any one injection

parameter and not result in more than a Z0-percent increase in fuel expenditure

over a nominal ascent (zero error). This total error allowance is

Ah = 1.4 kilometers (3or value)

Av = 1. 5 meters/sec (3cY value).

The position and velocity errors at thrust termination for the acceler-

ometers, gyros, and platform are tabulated in tables 5-2 through 5-6 and

include the direct and parking ascents. It should be noted that sensor accu-

racies are normally specified bytheir standard deviations (Icr values); however,

to eliminate confusion between the sensor specifications and the position and

velocity errors, all quantities are given in 3g values.

The boost sensor errors are budgeted in such a manner that the root sum

square values of the total guidance system errors and the selenophysical errors

are less than the error allowance set up as a standard. The results for the

direct ascent are given in table 5-7.

The sensor specifications are listed for the direct and parking ascents in
table 5- 8.

5.4. Z Error Comparison at Terminal Rendezvous

Errors in determining the position coordinates at the launch site are

introduced into the guidance system as errors in the nominal trajectory and

nominal velocity profile with the consequence of producing position and velocity

errors at thrust termination. Since the long boost for the direct ascent ends
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TABLE 5-7

3c_ ERRORS AT THRUST TERMINATION (30 KILOMETERS)

Guidance system errors

Selenophysical errors

Guidance plus

selenophysical errors (rss)

TotaI allowable error

Ah

(kilometers)

0. 131

I. 38O

1.383

1.400

Av

(meters/sec)

I. Z64

0. 598

1.398

I. 500

TABLE 5-8

SENSORS SPECIFICATIONS FOR LUNAR ASCENT TYPE-ALL

INERTIAL, SPACE STABILIZED PLATFORM-ALL

SENSORS ORTHOGONALLY ORIENTED

Sensor Direct Ascent Parking Ascent Units

3-a Values 3-a ValuesAccelerometer

Number

Range

Bias

Scale factor

Nonlinear effect

Nonlinear effect

Cross axis bias sensitivity

Cross axis scale factor

Gyro

Single -degree -of-freedom-

integrating

Number

Drift rate

Mass unbalance

Anisoelasticity

Platform

Initial misalignment

Servo bias

Deformation

g = 9. 8 x 10 -3 km/sec z

3

±1.5
-5

6xl0
-5

6 x 10_5

3 x 10_5

3x10 5
3x10

3 x 10 -5

3

0.3

1.Z

1. Z

6O

60

60

3

±1.5

6xl0

6xl0

3xl0-

3xl0 _

3x10 _

3x10

3

0.06

0.06

0.06

6O

6O

6O

g

g

g/g

g/gg

g/g3

g/cross-g

g/gcross-g

deg//hr

deg/hr/g

deg/hr/g 2

arc-sec

arc-sec

arc-sec
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at terminal rendezvous, a comparison of the terminal errors at thrust cutoff
for the two ascents is not valid. It is of interest to compare the final position
and velocity errors at terminal rendezvous. This is accomplished by multi-
plying the short boost thrust termination errors by the transfer matrix. The
same guidance sensors are used for booth ascents. The results are shown in
table 5-9.

It should be emphasized that the terminal errors listed in table 5-9 repre-
sent the worst possible conditions and do not represent the final terminal
rendezvous conditions. On the surface it would appear that the terminal error
conditions for the direct long boost ascent are much better; however, this
ascent requires on the basis of nominal conditions, 77 percent more fuel. The
errors are never realized in an actual rendezvous situation since midcourse
and terminal maneuvers are used to effect the final rendezvous closure.

5.4. 3 Mission Constraints and Tradeoff Considerations

The following is a list of constraints used in this study.

a. The boost sensors are based on a maximum allowable error in

position and velocity at the nominal 30-kilometer orbit just prior to injection

into a Hohmann transfer ellipse.

This error allowance is

Ah = I.4 kilometers (3-a value),

Av = I. 5 meters/sec (3-_ value).

b. The sensors are based on an optimized boost trajectory.

c. The target orbit is assumed circular at an altitude of ZOO kilometers.

d. The short and long boost use a thrust to weight ratio of 3 and Z re-

spectively.

e. A specific impulse of 300 seconds is assumed.

The error allowance is based on an expected maximum Z0 percent fuel

expenditure over the fuel requirements for a nominal Hohmann ascent from a

30-kilometer parking orbit. This error allowance is comprised of contribu-

tions from the guidance system and position errors in the navigation coordi-

nates at the launch site. A reduction in the overall error allowance would

require more accurate sensors and a reduction in the maximum error expec-

tation at the launch site. The results show that the selenophysical launch site

uncertainties contribute primarily to position errors whereas the guidance

system contributes principally to the velocity errors. Thus, it is better to

reduce proportionally the errors from both the guidance system and the

selenophysical uncertainties.
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Any weight in the form of payload put into a lunar orbit entails a severe

fuel penalty since the fuel requirements for the various stages of the lunar

mission represent payloads for the previous stage. This weight becomes an

important factor for any tradeoff considerations. As the sensor accuracy

increases, the complexity and weight of the associated electronics increases.

The computer capacity and weight also tend to increase. Therefore, increased

sensor accuracy which implies increased system weight must be weighed a-

gainst the saving in fuel. Conversely, less accurate sensors imply a slightly

lighter weight guidance system which requires more fuel. Consequently, the

final optimization of the guidance system must be based on the tradeoff con-

siderations of the sensor accuracies, the fuel penalties, and the overall

cost.

Midcourse corrections were not considered in this study since such con-

siderations are more properly within the province of the rendezvous study

section. However, midcourse corrections could be used to compensate for

errors at thrust termination and to alleviate the terminate rendezvous ma-

neuver requirements. Midcourse corrections would allow less accurate

sensors and a smaller computer at the expense of additional fuel expenditure;

however, the reduction in terminal maneuvers might offset the midcourse fuel

expenditure.

5.5 CONCLUSIONS

The sensor specifications in this study are based on the allowable injection

errors at the initiation of the Hohmann transfer ellipse from the nomial 30-

kilometer parking orbit. The same error criterion was applied to both direct

and parking ascents. However, the initial errors at thrust termination for

the parking ascent do not remain constant. These errors are a function of the

time spent in the parking orbit and have both secular and periodic propagation

characteristics. Consequently, the sensors for the parking ascent are required

to be more accurate. It is possible that if the position of the launch vehicle is

updated that sensors requirements can be made less accurate. The accuracy of

the updated position requires an assumption on the accuracy of the sensors of

the orbiting vehicle.

The major contribution to the velocity errors at thrust termination is from

the guidance system whereas the errors in the position coordinates at the launch

site represent the major contribution to the position errors at thrust termination.

The launch site uncertainties which represent the maximum error expectation in

position coordinates do not present a major obstacle in the guidance techniques

for a lunar ascent. It is highly probable that other methods such as high defi-

nition photographic techniques will reduce this error appreciably.

5 -40



As previously stated, this study does not recommend one type of ascent in
preference to another. The difference between the sensor requirements for the
two types of ascents is not sufficiently great to make this choice. It is felt
that mission requirements will dictate the choice of ascent. As a safety pre-
caution, it is possible to program both direct and parking ascents; thus, if
there is a malfunction during the direct ascent, a changeover is made to a
parking ascent.

The sensors obtained in this study are well within the state of the art.
Gonsidering the accuracy requirements, the entire inertial guidance package
could well fall within the category of off-the-shelf items; however, weight and
space considerations may dictate redesigns of existing equipment.
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6. LUNAR RENDEZVOUS

6. 1 INTRODUCTION

Lunar rendezvous is the procedure of bringing two vehicles into close spa-

tial proximity while in orbit about the moon. To determine sensor require-

ments which will make rendezvous possible, a rendezvous model is selected

which is not only practicable but representative of a number of systems being

proposed for lunar missions. The area examined begins at the termination

of the lunar ascent into parking orbit phase of the chaser vehicle, and ends

when the chaser vehicle is brought to within a preset standoff range of the

target vehicle with essentially zero relative velocity.

The following summary of notation is applicable to the lunar rendezvous

analysis.

SUMMARY OF NOTATION

ax

az

C, CI, CZ

e

g

h

i

Isp

K1, KZ

Km

Mo

Mp

R

R

Ro
r

m

Rs

R1

R2

t

longitudinal acceleration of chaser due to thrusting

vertical acceleration of chaser due to thrusting

control parameters

orientation of LOS with respect to an inertial reference

LOS angular rate with respect to inertial space

9.81 m/sec z

altitude of chaser

orbital plane inclination

fuel specific impulse

•control parameters

gravitational constant of moon = 4.90 x 103 km3/sec Z

initial mass of chaser

mass of propellant consumed by chaser due to rocket firing

chaser-to-target range

chaser-to-target range rate

chaser-to-target range at initiation of active rendezvous

radius of moon = 1738 km

smoothed value of measured chaser-to-target range

range at which longitudinal control of chaser switches from

coarse to vernier

standoff range at termination of active rendezvous

time
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tF

ts

_t i

Atf x

_tfz

AV

AV H

AVz

amount of time for which chaser rocket is to be fired

storage time for data smoothing process

interval between subsequent data points

amount of time, during measurement interval, that the longi-

tudinal engine is thrusting

amount of time, during measurement interval, that the verti-

cal engine is thrusting

velocity increment

total velocity increment required to perform a Hohmann

transfer

velocity impulse required for injection of Hohmann transfer

velocity impulse required during Hohmann transfer to syncho-

nize the chaser with the target

yaw (out-of-plane) altitude angle of chaser

pitch (in-plane) attitude angle of chaser

central angle between the radius vectors of chaser and target

during rendezvous

6.2 BACKGROUND

During rendezvous, the vehicle with which rendezvous is to be established

maintains a 200-krn circular orbit about the moon. This vehicle is designated

the target vehicle. The second vehicle, designated the chaser, is initially in

a 30-kin parking orbit essentially coplanar with the target orbit.

6.2. 1 Mission Profile

The overall rendezvous procedure comprises four phases:

• Injection

• Midcourse

• Active Rendezvous

• Docking

6. Z. 1. 1 Injection

When the chaser, on the basis of prior or present lunar and target meas-

urements, determines that it is correctly phased with the target, it imparts

a computed incremental velocity vector by means of rocket propulsion. This

velocity maneuver establishes an ascending transfer orbit which is nominally

cotangential to the target orbit at the anticipated rendezvous point.

6. Z. l.Z Midcourse

This phase constitutes the major portion of the time that the chaser is

traveling the transfer orbit. No active maneuvering is performed by the

chaser during this time.
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6.2. 1.3 Active Rendezvous

The active phase commences when the chaser-to-target range has decreased

to 25 kin. On the basis of sensor measurements to the target, the chaser per-

forms a series of propulsion maneuvers to close on the target in a prescribed

manner. The active phase terminates when the chaser achieves a preset

standoff range at essentially zero velocity with respect to the target.

6. Z. 1.4 Docking

Docking covers the process of bringing the chaser into physical contact

with the target. Since docking is envisioned as being manually controlled

using visual observations by a pilot, this phase is not investigated. Con-

sequently, the study area of interest covers injection through to termination

of the active rendezvous phase.

6.2. Z Guidance and Control

The guidance method assumes that the chaser vehicle applies a rocket

impulse while in the parking orbit to establish the transfer orbit which sub-

sequently intercepts the target orbit cotangentially. It is assumed that

injection is sufficiently accurate so that no midcourse correction is required.

The active phase of rendezvous commences at a range of 25 km.

6. Z. g. 1 Attitude Control

During most of the Midcourse Phase, chaser vehicle attitude stabilization

requirements are not determined by thrust control considerations, but they

may be dictated by sensor limitations. For the active phase, however, the

chaser vehicle attitude must be controlled so that the longitudinal rockets are

in the general direction of the chaser-to-target line of sight, and the normal

rockets are in the plane of line-of-sight rotation.

6. g. 2. Z Longitudinal Control

Longitudinal control is exercised to cause relative chaser-to-target range

rate to decrease as the range decreases. The desired relationship of range

versus range rate is shown by the dashed line in the phase plane plot of figure

6-1. If a constant level thrust control is assumed, however, this trajectory

cannot be followed. Instead, an upper and a lower boundary are defined.

Longitudinal thrust is initiated when the phase plane trajectory crosses the

upper boundary and is shut down when it crosses the lower boundary. A typi-

cal trajectory resulting from this procedure is shown by the dotted line.
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Figure 6-I. Phase Plane Representation of Longitudinal Control

6. Z. 2.3 Normal Control

The angular rate of the LOS is maintained at a value near zero by exercis-

ing normal control. Thrust is applied normal to the LOS and in the plane of

LOS rotation when the magnitude of the LOS rate exceeds a specified upper

threshold. The direction of thrusting is such that the magnitude of the LOS

rate is reduced. When the rate falls below a specified lower threshold, thrust

is shut down.

Normal control is mechanized in two channels which are defined by two

orthogonal axes normal to the LOS. Control of each channel is identical.

For purposes of this study, one channel is assumed to lie in the orbital plane

(also the plane of LOS rotation) and control is simulated in the computer pro-

gram that is utilized. The out-of-plane channel is handled analytically.
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6.2.3 Observables

The rendezvous problem is essentially one of controlling the relative geom-

etry and dynamics of the two vehicles involved. Consequently, it is desired

to measure, with the onboard sensor system, observables which yield infor-

mation concerning these relationships.

Observables selected for the lunar rendezvous are:

a. Chaser-to-target range

b. Chaser-to-target range rate

c. Azimuth LOS angular rate

d. Elevation LOS angular rate

6. Z.4 Error Characterization

6. Z.4. l System Errors

Errors occurring during the injection maneuver can be introduced in po-

sition, velocity vector, and timing. Position errors are assumed to comprise

three components: radial, down-range, and lateral (out of plane). Velocity

vector errors may develop in the magnitude of the imparted velocity incre-

ment or in the direction of its application. A directional error is equivalent

to an error in attitude of the chaser.

Timing errors are the result of performing the injection at the improper

time. This type of error is essentially the same as a down-range position

error.

Various levels of error in the following parameters were investigated to

determine their effect on the rendezvous procedure:

a. Altitude (radial position error)

b. Magnitude of the incremental velocity vector

c. Direction of the incremental velocity vector

d. Central angle - corresponding to a timing error

Injection errors are a combination of measurement errors and control

errors. Because of the assumed impulsive nature of the injection maneuver,

no attempt was made to separate the sources.

6.2.4.2 Active Rendezvous

Errors inherent in the measurement of the observables by the onboard

system are assumed to have the following form:
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• Range errors. It is assumed that the range measurement inaccuracies
are random in nature and follow a Gaussian distribution about the actual range.
The noise level is further assumed to be either a percentage of total range or
the same percentage of 1 kilometer, whichever is greater.

• Range rate errors. - It is assumed that the range rate inaccuracies

follow a normal distribution, are random in nature, and are uncorrelated to

range errors. Range rate errors are considered to be fixed levels independ-

ent of range.

• LOS angular rate errors. It is assumed that angular rate inaccuracies

are random in nature and follow a normal distribution about the actual rates.

The angular rate noise is' considered to be uncorrelated to either the range or

range rate noise.

6. Z.5 Error Criterion

Sensor errors result in erroneous control of the rendezvous procedure,

thereby demanding increased thrusting over an ideal transfer to achieve the

correct end conditions. These increased thrust demands result in increased

propellant consumption. The amount of propellant expended in executing an

orbital transfer and rendezvous is of great importance to a space mission be-

cause of the equivalent vehicle mass penalty. All analyses in this phase of

the study consider an equivalent incremental velocity, AV, applied during the

rendezvous phase, as the nondimensional measure of propellant consumption,

independent of Isp and vehicle masses. The equivalent mass of propellant

consumed can be determined by the relation:

Mp = M o [i - exp (- AV/glsp)] (kg) (assuming constant thrust)

where

M o = initial vehicle mass (kg)

g = 9.81 m/sec2

Isp = specific impulse (sec)

Next to the requirements for mission safety, the cost in incremental velocity

is the primary consideration in evaluating the effects of injection errors and

rendezvous sensor errors.

All analyses in this portion of the study refer the required incremental

velocity to that of the ideal Hohmann transfer, thereby providing for each run

a nondimensional measure of effectiveness in consumed propellant.

6-6



It is specified that any given 3_injection error shall not result in more

than a 20-percent incremental velocity increase over the ideal Hohmann trans-

fer for the entire rendezvous when no errors are included on the measure-

ments during the active rendezvous phase. Individual 3_ sensor errors dur-

ing active rendezvous shall not result in more than a 50-percent increase in

incremental velocity over the ideal Hohmann transfer.

6.3 ANALYSIS

A general objective approach to the determination of sensor requirements

was used in this study. It is important to note that specific types of equipment

are not assembled into a given configuration to determine whether or not its

operation is satisfactory. Instead, the analytical solution concerns a some-

what ideal, nominal solution as well as parametric studies of variations about

nominal value s.

6.3. 1 Model

The moon is presumed to develop an ideal central force field with a gravi-

tational parameter of:

K m = 4.90 x 103 km3/sec Z

The mean lunar surface radius is assumed to be:

r = 1738 kmm

6.3. I. l Geometry

As previously mentioned, the rendezvous model selected for the lunar case

involves a target vehicle considered to be in a 200-km circular orbit about the

moon as indicated in figure 6-2. The manned chaser vehicle is presumed to

be in a 30-km circular parking orbit coplanar with the target orbit. It is not

essential for this sensor study that either orbit be circular or even coplanar,

but for convenience, the computer program used for simulation is so arranged.

When the chaser obtains information indicating that is is correctly phased to

the target by central angle 4, or by measured range, R, it imparts a computed

incremental velocity vector at point I. The application of this velocity maneu-

ver places the chaser in an ascending transfer ellipse which is designed to

intercept the target orbit cotangentially at point 2, at which time a tangential

velocity increase of the correct magnitude would theoretically bring the two

vehicles together with zero final relative velocity. Practically, as further

described, a series of active rendezvous maneuvers commences at short

range and continues until the two vehicles are in the same orbit but displaced
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Figure 6-Z. Lunar Orbital Rendezvous

by a preset standoff range. The computer program is designed to accommo-

date any desired transfer angle U_, and to modify the velocity maneuvers

and ascent ellipse accordingly. In this study, however, all runs are taken

with the full 180 degrees - nominally the Hohmann transfer - in the interests

of propellant conservation.
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For the nominal 180-degree case, the chaser vehicle fires a posigrade

tangential velocity increment of 37.75 m/sec at point l, where the range is

414.2 km and the range is -203.6 m/sec.

6.3. 1.2 Guidance and Control

a. Guidance Description - The guidance method assumes that the chaser

vehicle applies a rocket impulse while in the parking orbit to establish a trans-

fer orbit which subsequently intercepts the target orbit cotangentially. Proper

phasing is required to assure a successful rendezvous. It is assumed that the

injection is sufficiently accurate so that no midcourse correction is required.

At a relatively short range (less than 25 kin) the active phase of rendezvous

commence s.

The guidance method used for the lunar rendezvous is illustrated by figure

6-3. As the chaser rises toward the target it approaches ahead of the target

but its velocity decreases and the target tends to overtake the chaser vehicle.

At a range of 25 km the inertial reference of the chaser is aligned, as indicated,

to the range vector and to the selenocentric vertical; thereafter, it is space

stabilized to that particular space reference. The chaser vehicle is then

attitude stabilized to this space reference for the duration of the approach.

Dual thrust level maneuvering rockets with a multiple restart capability are

aligned to the body axes, so that an incremental velocity can be established

along any body axis without altering the attitude of the chaser, thereby per-

mitting rapid velocity maneuvering without the necessity for changing vehicle

attitude. With this type of transfer, there is little improvement in propellant

conservation with the alternative use of thrust vector control.

b. Control Description - In control of vehicle attitude and rendezvous

maneuvering, it is assumed that rendezvous is completed when the chaser

vehicle is ahead of the target at a standoff range of 50 ±i0 meters while the

magnitude of the range rate is less than 0.5 m/sec. The variation of range

with transit time is illustrated by figure 6-4 for the nominal 30/200-km ascent

trajectory. Because of the semilog plot, the slope of this curve is not indica-

tive of R. The variation of elevation angle with transit time for the same

ascent is presented by the curve of figure 6-5.

(i) Attitude Control - During most of the trip in the parking orbit

and in the ascent trajectory the chaser vehicle may be considered to be approx-

imately stabilized to the selenocentric vertical and to the orbital plane, al-

though it makes little difference to this study. Departures from this attitude

may be undertaken to accommodate angular limitations on any sensors.
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Figure 6-3. Rendezvous Guidance (Lunar Orbital Rendezvous)
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At the enabling range, however, the inertial reference of the chaser ve-

hicle is inertially stabilized by aligning the longitudinal axis to that range

vector and the lateral axis normal to that local selenocentric vertical. This

space stabilized reference is used to control vehicle attitude during the active

phase of rendezvous.

(Z) Normal Control - Normal control is enabled when:

R = Ri = Z5 km

The elevation angular rate, (_, is monitored continuously. The following

conditions are applied to reduce the likelihood of responding to a large random
error. If either:

or

> 0.3 mr/sec for two consecutive seconds

< -0. 3 mr/sec for two consecutive seconds
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detern_ine whether coarse or vernier control is indicated:

a. If JR el > Z. 5 m/sec use coarse control.

b. If IR e J < 2..5 m/sec use vernier control.

The rocket firing time is then calculated:

C[Ral

where:

lazl =

or:

0.9 (providing for deliberate undershoot)

0.5 m/sec 2 (coarse)

(large enough to accommodate any reasonable orbital acceleration)

l a zj = 0. 1 n_/sec 2 (vernier)
(satisfactory for terminal rendezvous)

The proper rocket is fired for the computed time and in a direction to reduce

the LOS rate, e:

az = - laz I sgn (_)

A mandatory coast period of at least 3 seconds is required between all

vertical rocket firings.

In a further effort to reduce wasteful nuisance firings due to noise, firing

is inhibited whenever the firing time is less than Z seconds. In coarse control

this is equivalent to a velocity error of I.I m/sec, while in vernier control it

represents a velocity deadzone of 0.22 m/sec.

(3) Longitudinal Control - Longitudinal control commences at

close range and matches target velocity and establishes a standoff position

relative to the target.

Longitudinal control is enabled when:

R<R.=25km
1

and is initiated on the initiating boundary of the desired switching region -

defined by parabolic curves as illustrated by figure 6-6 when:

whe re :

R 1, the coarse standoff range = 200 meters
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t F

whe re :

The control endeavors to contain the phase plane trajectory within this

switching region. When the trajectory intercepts the switching boundary,

rocket firing, time is computed:

= (sec)
a

x

C = 1.7 (affording margin of undercontrol)

K 1 = 0.35 m/sec 2

I xl -- m/soc
The chaser vehicle is then accelerated for the above time as defined by the
relation:

a x = -laxfSgn (R - R1) (m/sec 2)

As soon as I <5 m/sec, the system is switched to vernier control.

Vernier control is a complete four-quadrant control of the phase plane tra-

jectory, of which the fourth (normal approach) quadrant is shown in figure 6-7.

As before, the trajectory is maintained within the desired switching region.

With reasonable rendezvous sensor accuracy levels, the trajectory will be

transferred from coarse to vernier control and will then be contained within

the switching region until the desired vernier standoff range of 50 meters is

achieved with substantially zero relative velocity. The rendezvous is con-

sidered to be complete when:

R 1=i_150 +10 metersand < 0.5 m/sec

The phase plane quadrant is first established:

Quadrant

I

II

III

IV (normal approach)

(R- R z)

+

m

+

R

+

+

m

In quadrant I or III (range opening from rendezvous point:

I +I 1)
tF = laxl (sec)
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where:

C 1 = 0.9
2

K l = 0.07 m/sec

R 2 = 50 m

lax[ = 0.1 m/sec 2
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RANGE,R (M)
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Figure 6-7. Longitudinal Control - Vernier

Accelerate for the above time:

-i xl
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In quadrant II or IV, if [I_]
rapid a closure):

>jK 2 [R- R2[ where K 2
Z

= 0. 14 m/sec (too

t F =

where:

C 2

(-
(sec)

= 1. 75 (providing a reasonable margin of undercontrol)

Accelerate for the above time:

ax = - lax[ sgn (R - R2)

JK 1 IR - R2[ (too slow a closure)

: laxl (5oc 
Accelerate for the above time:

=l xlsgn (R - R2) (m/sec 2)

As in normal control, a coasting period of at least 3 seconds is mandatory

between longitudinal rocket firings, and no attempt is made to fire if the com-

puted firing time is less than 2 seconds. This latter restriction introduces a

longitudinal velocity deadzone of 1.0 m/sec in coarse control and 0.2 m/sec

in vernier.

(4) Lateral Control - Although the chaser transfer orbit is nomin-

ally coplanar with the target orbit, nominal lateral (out of plane) corrections

will be required. The lateral control scheme is essentially identical with
vertical control.

6.3.1.3 Data Processing

A digital data smoother is required for smoothing range, range rate, and

angular rate u_..... prior +_v ,_,singthem for control purposes.

Each smoother, as seen in figure 6-8 provides not only smoothing of the

raw data during the coasting phase, but also affords velocity compensation

during rocket firing periods in any axis. Smooth tracking can thereby be

attained even when firing maneuvering rockets.
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Figure 6-8. Digital Data Smoother

The following relations apply:

At.
I

t
s

n

= data storage interval (the l-second interval used in the program

appears to be adequate for rendezvous control)

= smoothnig time (sec)

= number of data samples used in the smoothing process
ts

= -- +l
At.

l
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The incremental velocity provided during the last computing interval is.

AV. = a AtFx for the x-axisIx x

AV. = a AtFz for the z-axis1z z

At each A t. enter present raw value of data, a , and reject from storage the

oldest smoothed value, an t-l'l Determine pre°ent smoothed value of data,

a 1, as follows.

a. During Coasting Periods (no rocket firing) - Collect present raw

value, a , and n-l most recent smoothed values; i.e., a2, a3, - - , a . Using
method o°f least squares, determine best first or second order of fit (flnrst

order was used for this program) to these n data samples. Using this fit,

project (extrapolate) for the present smoothed value, a I. This present

smoothed value is the value to be used for control. This value is stored and

becomes the most recent smoothed value for the next computation, at which

time it will become a 2.

b. During Firing Periods in any Axis - Apply, as applicable, a weighted

correction each second to each smoothed data sample as indicated below:

Range, R

a { = present raw data value
o I t

a2 { t = al { t-1 - 0.5 AV.
lx

a3 { t = a2 { t-l - 1.5 AV.
ix

lx

etc.

Range rate, I_

a l = present raw datum
o I t

a3 {t =az {t-l- _v.
lx

etc.

Elevation rate, e

ao{ t = present raw value of data

a2{ t = al{ t-i-AViz/R s

a3{ t = a2{ t-I-AViz/R s

etc.

where: R s = present smoothed value of range.
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6.3. 1.4 Description of Sensors

The sensing elements required for orbital injection and for the active

rendezvous are discussed separately.

a. Injection Sensors - Prior to executing the injection maneuver it is

necessary that the chaser vehicle in effect know the orbital elements of both

the target and the chaser vehicles. It is assumed that target orbit data has

been previously transmitted to the chaser. Chaser altitude must be measured

as must the relative phase angle between the two vehicles.

On the basis of orbital information, the chaser computes the incremental

velocity vector that must be applied and determines when to apply it in order

to establish the properly phased transfer orbit.

The execution of the injection maneuver is affected not only by errors in

determination of chaser altitude and phase angle, but also by the incremental

velocity vector actually imparted to the chaser vehicle. A directional error

is introduced by vehicle pitch and yaw attitude errors as well as by thrust

misalignment within the vehicle itself, although for this study it is considered

solely a consequence of vehicle attitude error. A velocity magnitude error is

considered to be a velocity cutoff error regardless of the cause.

b. Rendezvous Sensors - For this portion of the study it is assumed that

the rendezvous sensors afford a direct measure of range, range rate, and two

angular rates - corresponding to space rates of the antenna gimbals.

6.3.2 Error Analysis - Disital Program

A digital computer program to simulate lunar rendezvous was prepared

for the IBM 7094. The program simulates the measurements, data condition-

ing, computations, and maneuvering of a chaser in achieving a rendezvous

with a nonmaneuvering target.

Inputs to the program have becn designed so that the effects of a number

of different parameters can easily be studied. Among the inputs to the pro-

gram are four quantities which represent errors in the injection of the chaser

into its parking orbit and ascent ellipse. Other inputs include the specification

of standard deviations of noise quantities, the order of smoothing to be used

on the simulated observables, and the number of points to be smoothed.

6.3.2. 1 Analysis of Injection Errors

Four types of injection errors are considered:

a. Altitude

b. Incremental velocity magnitude
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c. Incremental velocity direction (tangential for the 180-degree transfer)
d. Phasing (timing)

To obtain insight of the relative effect of these injection errors, the miss
distance sensitivity coefficients were determined as follows:

The computer program was run without the active rendezvous guidance en-
gaged. Each error was inserted independently and the horizontal and vertical
components of chaser-to-target range were noted when the chaser had com-

pleted the full 180 degrees of the transfer ellipse. The sensitivity coefficients

are presented in table 6-i.

TABLE 6- 1

MISS DISTANCE SENSITIVITY COEFFICIENTS

(30/Z00-km) LUNAR ORBIT TRANSFER

Error

altitude

velocity

attitude

target lead

(timing)

Horizontal Coefficients

IV[x/Oh 1

aMx/av t

aMx/O Y I

aMx/ atI

4.94

ll.0

-2.94

0.274

Vertical Coefficients

My/Oh 1

OMy/@V 1

OMy/aY 1

aMy�C) t 1

1.14

4.77

Units

km

km

km

m--_ec

km

deg

km

sec

Allowable injection errors were obtained by making a series of computer

runs with the active rendezvous guidance engaged and a particular injection

error inserted in each run. Rendezvous was considered to be complete when:

R = 50 +i0 meters

and

Ikl < o._ m/sec

The propellant consumption (in terms of AV) for each run was compared with

the incremental velocity _,_l^V.H,%_q,1_red.....for the ideal Hohmann transfer to pro-

vide a meaningful comparison among runs, A A___V of I. 0 (i00 percent) would

thus constitute a perfect run. AV H

In establishing tolerable levels of injection errors it was arbitrarily assumed

that a 20-percent increase in propellant consumption (aAV/AV H of I. Z) would
correspond to a 3c; level of tolerable injection error. It was f_rther decided

that if the error was unbalanced around zero, the lower error level obtained

from this criterion would be selected in the interest of conservation.
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Because of the two-dimensional nature of the digital program. The allow-

able yaw attitude error is obtained analytically.

A yaw error results in a lateral (out-of-plane) velocity increment of:

AVLA T = AV I sin A_

An equal increment at rendezvous is required to compensate for this lateral

component. The maximum allowable velocity increment which can be used for

compensation is 0. 2 AV E .

Therefore:

AV 1 sin A_

or

= 0.2&V

-I <0. 2 AV HA_ = sin AV 1

where

AV = 75 m/sec
H

AVI = 38 m/sec

H

6.3.2.2 Analysis of Rendezvous Sensor Errors

A series of IBM 7094 computer runs is made for the nominal injection case

(zero injection error) with various levels of random uncorrelated error or noise

inserted into the simulated range, range rate, and angular rate inputs. A fixed

ratio of the three corresponding errors in range, range rate, and angular rate

is roughly established by determining that each type of error results in a cor-

responding propellant consumption for a particular injection condition. This

error ratio, determined to be Z percent of R, 1 m/sec of R, and 0. 1 mr/sec of

e, is maintained throughout the analysis.

At each noise level a series of 25 computer runs is made with automatic

rendezvous engaged and with random noise inputs; i.e., each run has a

different random number routine superimposed on each of the observables.

Rendezvous is considered accomplished for each run when:

R = 50 ±I0 meters

and

IRI<o. _ m/sec

The incremental velocity ratio, AV/AV H, required to perform a satisfactory
rendezvous is determined for each run.
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The results of these runs are plotted in figure 6-9 which presents for each

noise level the arithmetic mean, the maximum of 25 noise samples, and the

mean-plus-3_ value. This latter value is then used in establishing the level

of acceptability. A least-squares second-order fit is then applied to the plotted

points to present smooth curves. Although the type of distribution of the de-

viations from the mean is not readily determinable from the limited number of

samples (25) considered at each level of noise ratio, the 3G value lies some-

where between the theoretical minimum of 89 percent up to the maximum (at

normal distribution) of 99+ percent.

6.4 RESULTS

6.4. 1 Results of Injection Analysis

The effects of initial injection errors on propellant consumption are

separately displayed by the curves of figures 6-10, 6-11, 6-12, and 6-13,

which show respectively the consequences of errors in altitude, incremental

velocity magnitude and direction, and phase angle. By combining these re-

sults with the yaw attitude error computed analytically, tolerable levels of

injection errors are portrayed in table 6-2.

Attitude and range measurements can be made using radar to the state of the

art accuracy indicated. Integrating accelerometers form a ready means of

measuring incremental velocity. Pitch (and roll) attitude references can be

measured with infrared horizon scanners, while the yaw reference angle can

be determined by gyro-compassing techniques. Inclination can be determined

by lunar navigation methods.

It should be observed that in every case the state of the art accuracies for

the injection sensors are significantly better than required for the rendezvous

mission. The system, however, appears to be sensitive to positive velocity

errors.

The effects of injection errors on the phase plane trajectory for an active

rendezvous are illustrated by figure 6-14, which indicates the dispersion

from the nominal error-free case. Variations in elevation angle with range

during the active rendezvous are presented by figure 6-15, which shows the

dispersion from. the nominal case as introduced by injection errors.

6.4.2 Results of Active Rendezvous Analysis

The point where the smoothed curve of the mean plus 3G value results in
AV

a_-vHof 150 percent is postulated as providing a conservative level of accept-
ability. These "tolerable" rendezvous sensor errors are presented in table

6-3.
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TABLE 6-Z

INJECTION SENSOR ERRORS

Symbol

Ah

Ah_

AV

A_

AR

At

Ai

Quantity

Altitude

Pitch attitude

Velocity

Yaw attitude

Central angle

Range

Timing

Inclination

Sensor

Accuracy (3 _)

2.8 km

5. I deg

0.5 m/sec

2Z. 2 deg

0.36 deg

2.57% of R

5Z. Z sec

0.8 deg

State of the Art

Accuracy (3 o)

30 m (0. 1% of h)*

0.3 deg

0.3 m/sec

0.3 deg

0.1%of R

3 sec

O. 1 deg

While a radar altimeter can measure terrain altitude this accurately, the
absolute altitude from a lunar reference datum could not be determined to

this degree of precision.

oil:
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Figure 6-14. Rendezvous Phase Plane Illustrating Effect of Injection Errors
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TABLE 6-3

RENDEZVOUS SENSOR ERRORS

State of the Art
Quantity Sensor Accuracy (3o)

Accuracy (3o)

Ranze

Range rate

Angular rate

3.3% or 33 m

I. 65 m/sec

0 165 mr/sec

0.5 % or 1 rn

0.03 m/see

0.05 mr/see

From the curves of figure 6-9 it is seen that for any but the smallest sensor

errors the deviation from the mean is appreciable, indicating primarily the

sensitivity of the active rendezvous control system to LOS rate errors.

Large random angular rate errors early in the approach trigger premature

normal corrections (and corresponding overshoots) which must be subsequently

countered. It is apparent that the normal system should be made less sus-

ceptible to angular rate errors particularly at long range. It should be made

more selective in initiating a long-range correction and probably should deliber-

ately try for a larger under-shoot when making a correction.

The accuracy requirement for the angular rate observations appears to be

unnecessarily severe. Tightening the range and range rate accuracy require-

ments will in some measure alleviate the severity of the angular rate accuracy

requirement. Operation was attempted only at the one accuracy ratio indicated,

but it appears most desirable to try other ratios favoring lower LOS rate ac-

curacies, particularly since the range requirement offers considerable latitude.

For purposes of direct comparison, additional runs definitely should be

made using the identical rendezvous control model, but with LOS rates derived

from LOS angles rather than observed directly.

Terminal accuracy suffers with larger error levels. The standoff range

of 50 meters is probably too close for the larger error levels. In any event,

the use of higher accuracy sensors will definitely result in lower propellant

consumption.

6.5 CONCLUSIONS

For the lunar orbital rendezvous phase of the mission, several types of

sensing devices are necessary. As determined from the preceding subsections,

certain minimum levels of accuracy are required of each sensor for success-

ful completion of the mission while also considering the important factor of

propellant conservation.
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6.5.1 Injection Sensor Requirements

The dynamic ranges and accuracy requirements are presented in table 6-4.

TABLE 6-4

INJECTION SENSOR REQUIREMENTS

Quantity

Measured

Altitude

Incremental velocity*

Pitch angle ;:'

Yaw angle ;:-"

Range

Inclination angle

Dynamic Range

MinMax

+40 km

+50 m/sec

+90 deg

+ 180 deg

+500 km

+5 deg

0

0

-90 deg

-180 deg

0

-5 deg

Max Allowable rms

(l _) Sensor Error

0.93 km

0.17m/sec

1.7 deg

7.4 deg

0.86% of R

027 deg

With the quantities so indicated, the listed error is the total error per-

mitted in that particular quantity, including both measurement and control

system inaccuracies.

While sensors with the above accuracy levels will produce a satisfactory

rendezvous ascent, it should be emphasized that the use of more accurate

sensors will normally conserve propellant - a precious commodity at the

moon.

6. 5.2 Rendezvous Sensor Requirements

The dynamic range and accuracy requirements of rendezvous sensors nec-

essary to complete a satisfactory rendezvous mission without serious pro-

pellant expenditure are presented in table 6-5. These requirements are based

on a 15-second smoothing time and a 1-second sampling interval.

In this study, where LOS rates are observed directly, the LOS rate re-

quirement is severe. This apparently severe angular rate requirement should

be resolved by tightening up range and range rate requirements and by directly

comparing observed versus derived angular rate information.

Although the above sensor requirements will afford a satisfactory rendezvous

it should be stressed that greater accuracy will generally reduce the energy

expended during the rendezvous phase.

6.6 ADDITIONAL ANALYSIS

A second analysis of lunar rendezvous was performed. However, the

guidance system used for this analysis is not typical of a rendezvous system
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TABLE 6-5

RENDEZVOUS SENSOR REQUIREMENTS

Quantity

Measured

Range

Range rate

LOS angular rates

(az & el)

Vehicle attitude

(pitch, roll, yaw)

Dynamic Range

M ax

30 km*

+10 m/sec

(opening)

Z mr/sec

+ 180 deg (yaw)

+90 deg (pitch

and roll)

Min

0

-50m/sec

(closing)

-Zmr/sec

-180 deg (yaw)

-90 deg (pitch

and roll)

Max Allowable rms

{l a) Sensor Error

1.1%of 11 m

0.55 mr/sec

0.055 mr/sec

0.2 deg firing period

(to reduce cross-cou-

pling) 5 deg during

tracking (vehicle may

change attitude to

accommodate LOS

angle limits)

.i.

The maximum range of the ranging device is that required for the active

phase of rendezvous. Actually this device should probably be the same

sensor that measures target range prior to injection and which may also

occasionally monitor the target during the coasting period of the rendezvous
ascent.

and is quite expensive from the standpoint of fuel consumption. For this

reason, the sensor requirements obtained are not considered to be realistic

and the analysis is not included in this report.
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